mirror of
https://github.com/adulau/aha.git
synced 2024-12-29 12:16:20 +00:00
446 lines
12 KiB
C
446 lines
12 KiB
C
|
/*
|
||
|
* TCP CUBIC: Binary Increase Congestion control for TCP v2.0
|
||
|
*
|
||
|
* This is from the implementation of CUBIC TCP in
|
||
|
* Injong Rhee, Lisong Xu.
|
||
|
* "CUBIC: A New TCP-Friendly High-Speed TCP Variant
|
||
|
* in PFLDnet 2005
|
||
|
* Available from:
|
||
|
* http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/cubic-paper.pdf
|
||
|
*
|
||
|
* Unless CUBIC is enabled and congestion window is large
|
||
|
* this behaves the same as the original Reno.
|
||
|
*/
|
||
|
|
||
|
#include <linux/config.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <net/tcp.h>
|
||
|
|
||
|
|
||
|
#define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
|
||
|
* max_cwnd = snd_cwnd * beta
|
||
|
*/
|
||
|
#define BICTCP_B 4 /*
|
||
|
* In binary search,
|
||
|
* go to point (max+min)/N
|
||
|
*/
|
||
|
#define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
|
||
|
|
||
|
static int fast_convergence = 1;
|
||
|
static int max_increment = 16;
|
||
|
static int beta = 819; /* = 819/1024 (BICTCP_BETA_SCALE) */
|
||
|
static int initial_ssthresh = 100;
|
||
|
static int bic_scale = 41;
|
||
|
static int tcp_friendliness = 1;
|
||
|
|
||
|
module_param(fast_convergence, int, 0644);
|
||
|
MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
|
||
|
module_param(max_increment, int, 0644);
|
||
|
MODULE_PARM_DESC(max_increment, "Limit on increment allowed during binary search");
|
||
|
module_param(beta, int, 0644);
|
||
|
MODULE_PARM_DESC(beta, "beta for multiplicative increase");
|
||
|
module_param(initial_ssthresh, int, 0644);
|
||
|
MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
|
||
|
module_param(bic_scale, int, 0644);
|
||
|
MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
|
||
|
module_param(tcp_friendliness, int, 0644);
|
||
|
MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
|
||
|
|
||
|
|
||
|
/* BIC TCP Parameters */
|
||
|
struct bictcp {
|
||
|
u32 cnt; /* increase cwnd by 1 after ACKs */
|
||
|
u32 last_max_cwnd; /* last maximum snd_cwnd */
|
||
|
u32 loss_cwnd; /* congestion window at last loss */
|
||
|
u32 last_cwnd; /* the last snd_cwnd */
|
||
|
u32 last_time; /* time when updated last_cwnd */
|
||
|
u32 bic_origin_point;/* origin point of bic function */
|
||
|
u32 bic_K; /* time to origin point from the beginning of the current epoch */
|
||
|
u32 delay_min; /* min delay */
|
||
|
u32 epoch_start; /* beginning of an epoch */
|
||
|
u32 ack_cnt; /* number of acks */
|
||
|
u32 tcp_cwnd; /* estimated tcp cwnd */
|
||
|
#define ACK_RATIO_SHIFT 4
|
||
|
u32 delayed_ack; /* estimate the ratio of Packets/ACKs << 4 */
|
||
|
};
|
||
|
|
||
|
static inline void bictcp_reset(struct bictcp *ca)
|
||
|
{
|
||
|
ca->cnt = 0;
|
||
|
ca->last_max_cwnd = 0;
|
||
|
ca->loss_cwnd = 0;
|
||
|
ca->last_cwnd = 0;
|
||
|
ca->last_time = 0;
|
||
|
ca->bic_origin_point = 0;
|
||
|
ca->bic_K = 0;
|
||
|
ca->delay_min = 0;
|
||
|
ca->epoch_start = 0;
|
||
|
ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
|
||
|
ca->ack_cnt = 0;
|
||
|
ca->tcp_cwnd = 0;
|
||
|
}
|
||
|
|
||
|
static void bictcp_init(struct sock *sk)
|
||
|
{
|
||
|
bictcp_reset(inet_csk_ca(sk));
|
||
|
if (initial_ssthresh)
|
||
|
tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
|
||
|
}
|
||
|
|
||
|
/* 65536 times the cubic root */
|
||
|
static const u64 cubic_table[8]
|
||
|
= {0, 65536, 82570, 94519, 104030, 112063, 119087, 125367};
|
||
|
|
||
|
/*
|
||
|
* calculate the cubic root of x
|
||
|
* the basic idea is that x can be expressed as i*8^j
|
||
|
* so cubic_root(x) = cubic_root(i)*2^j
|
||
|
* in the following code, x is i, and y is 2^j
|
||
|
* because of integer calculation, there are errors in calculation
|
||
|
* so finally use binary search to find out the exact solution
|
||
|
*/
|
||
|
static u32 cubic_root(u64 x)
|
||
|
{
|
||
|
u64 y, app, target, start, end, mid, start_diff, end_diff;
|
||
|
|
||
|
if (x == 0)
|
||
|
return 0;
|
||
|
|
||
|
target = x;
|
||
|
|
||
|
/* first estimate lower and upper bound */
|
||
|
y = 1;
|
||
|
while (x >= 8){
|
||
|
x = (x >> 3);
|
||
|
y = (y << 1);
|
||
|
}
|
||
|
start = (y*cubic_table[x])>>16;
|
||
|
if (x==7)
|
||
|
end = (y<<1);
|
||
|
else
|
||
|
end = (y*cubic_table[x+1]+65535)>>16;
|
||
|
|
||
|
/* binary search for more accurate one */
|
||
|
while (start < end-1) {
|
||
|
mid = (start+end) >> 1;
|
||
|
app = mid*mid*mid;
|
||
|
if (app < target)
|
||
|
start = mid;
|
||
|
else if (app > target)
|
||
|
end = mid;
|
||
|
else
|
||
|
return mid;
|
||
|
}
|
||
|
|
||
|
/* find the most accurate one from start and end */
|
||
|
app = start*start*start;
|
||
|
if (app < target)
|
||
|
start_diff = target - app;
|
||
|
else
|
||
|
start_diff = app - target;
|
||
|
app = end*end*end;
|
||
|
if (app < target)
|
||
|
end_diff = target - app;
|
||
|
else
|
||
|
end_diff = app - target;
|
||
|
|
||
|
if (start_diff < end_diff)
|
||
|
return (u32)start;
|
||
|
else
|
||
|
return (u32)end;
|
||
|
}
|
||
|
|
||
|
static inline u32 bictcp_K(u32 dist, u32 srtt)
|
||
|
{
|
||
|
u64 d64;
|
||
|
u32 d32;
|
||
|
u32 count;
|
||
|
u32 result;
|
||
|
|
||
|
/* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
|
||
|
so K = cubic_root( (wmax-cwnd)*rtt/c )
|
||
|
the unit of K is bictcp_HZ=2^10, not HZ
|
||
|
|
||
|
c = bic_scale >> 10
|
||
|
rtt = (tp->srtt >> 3 ) / HZ
|
||
|
|
||
|
the following code has been designed and tested for
|
||
|
cwnd < 1 million packets
|
||
|
RTT < 100 seconds
|
||
|
HZ < 1,000,00 (corresponding to 10 nano-second)
|
||
|
|
||
|
*/
|
||
|
|
||
|
/* 1/c * 2^2*bictcp_HZ */
|
||
|
d32 = (1 << (10+2*BICTCP_HZ)) / bic_scale;
|
||
|
d64 = (__u64)d32;
|
||
|
|
||
|
/* srtt * 2^count / HZ
|
||
|
1) to get a better accuracy of the following d32,
|
||
|
the larger the "count", the better the accuracy
|
||
|
2) and avoid overflow of the following d64
|
||
|
the larger the "count", the high possibility of overflow
|
||
|
3) so find a "count" between bictcp_hz-3 and bictcp_hz
|
||
|
"count" may be less than bictcp_HZ,
|
||
|
then d64 becomes 0. that is OK
|
||
|
*/
|
||
|
d32 = srtt;
|
||
|
count = 0;
|
||
|
while (((d32 & 0x80000000)==0) && (count < BICTCP_HZ)){
|
||
|
d32 = d32 << 1;
|
||
|
count++;
|
||
|
}
|
||
|
d32 = d32 / HZ;
|
||
|
|
||
|
/* (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ) */
|
||
|
d64 = (d64 * dist * d32) >> (count+3-BICTCP_HZ);
|
||
|
|
||
|
/* cubic root */
|
||
|
d64 = cubic_root(d64);
|
||
|
|
||
|
result = (u32)d64;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Compute congestion window to use.
|
||
|
*/
|
||
|
static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
|
||
|
{
|
||
|
u64 d64;
|
||
|
u32 d32, t, srtt, bic_target, min_cnt, max_cnt;
|
||
|
|
||
|
ca->ack_cnt++; /* count the number of ACKs */
|
||
|
|
||
|
if (ca->last_cwnd == cwnd &&
|
||
|
(s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
|
||
|
return;
|
||
|
|
||
|
ca->last_cwnd = cwnd;
|
||
|
ca->last_time = tcp_time_stamp;
|
||
|
|
||
|
srtt = (HZ << 3)/10; /* use real time-based growth function */
|
||
|
|
||
|
if (ca->epoch_start == 0) {
|
||
|
ca->epoch_start = tcp_time_stamp; /* record the beginning of an epoch */
|
||
|
ca->ack_cnt = 1; /* start counting */
|
||
|
ca->tcp_cwnd = cwnd; /* syn with cubic */
|
||
|
|
||
|
if (ca->last_max_cwnd <= cwnd) {
|
||
|
ca->bic_K = 0;
|
||
|
ca->bic_origin_point = cwnd;
|
||
|
} else {
|
||
|
ca->bic_K = bictcp_K(ca->last_max_cwnd-cwnd, srtt);
|
||
|
ca->bic_origin_point = ca->last_max_cwnd;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* cubic function - calc*/
|
||
|
/* calculate c * time^3 / rtt,
|
||
|
* while considering overflow in calculation of time^3
|
||
|
* (so time^3 is done by using d64)
|
||
|
* and without the support of division of 64bit numbers
|
||
|
* (so all divisions are done by using d32)
|
||
|
* also NOTE the unit of those veriables
|
||
|
* time = (t - K) / 2^bictcp_HZ
|
||
|
* c = bic_scale >> 10
|
||
|
* rtt = (srtt >> 3) / HZ
|
||
|
* !!! The following code does not have overflow problems,
|
||
|
* if the cwnd < 1 million packets !!!
|
||
|
*/
|
||
|
|
||
|
/* change the unit from HZ to bictcp_HZ */
|
||
|
t = ((tcp_time_stamp + ca->delay_min - ca->epoch_start)
|
||
|
<< BICTCP_HZ) / HZ;
|
||
|
|
||
|
if (t < ca->bic_K) /* t - K */
|
||
|
d32 = ca->bic_K - t;
|
||
|
else
|
||
|
d32 = t - ca->bic_K;
|
||
|
|
||
|
d64 = (u64)d32;
|
||
|
d32 = (bic_scale << 3) * HZ / srtt; /* 1024*c/rtt */
|
||
|
d64 = (d32 * d64 * d64 * d64) >> (10+3*BICTCP_HZ); /* c/rtt * (t-K)^3 */
|
||
|
d32 = (u32)d64;
|
||
|
if (t < ca->bic_K) /* below origin*/
|
||
|
bic_target = ca->bic_origin_point - d32;
|
||
|
else /* above origin*/
|
||
|
bic_target = ca->bic_origin_point + d32;
|
||
|
|
||
|
/* cubic function - calc bictcp_cnt*/
|
||
|
if (bic_target > cwnd) {
|
||
|
ca->cnt = cwnd / (bic_target - cwnd);
|
||
|
} else {
|
||
|
ca->cnt = 100 * cwnd; /* very small increment*/
|
||
|
}
|
||
|
|
||
|
if (ca->delay_min > 0) {
|
||
|
/* max increment = Smax * rtt / 0.1 */
|
||
|
min_cnt = (cwnd * HZ * 8)/(10 * max_increment * ca->delay_min);
|
||
|
if (ca->cnt < min_cnt)
|
||
|
ca->cnt = min_cnt;
|
||
|
}
|
||
|
|
||
|
/* slow start and low utilization */
|
||
|
if (ca->loss_cwnd == 0) /* could be aggressive in slow start */
|
||
|
ca->cnt = 50;
|
||
|
|
||
|
/* TCP Friendly */
|
||
|
if (tcp_friendliness) {
|
||
|
u32 scale = 8*(BICTCP_BETA_SCALE+beta)/3/(BICTCP_BETA_SCALE-beta);
|
||
|
d32 = (cwnd * scale) >> 3;
|
||
|
while (ca->ack_cnt > d32) { /* update tcp cwnd */
|
||
|
ca->ack_cnt -= d32;
|
||
|
ca->tcp_cwnd++;
|
||
|
}
|
||
|
|
||
|
if (ca->tcp_cwnd > cwnd){ /* if bic is slower than tcp */
|
||
|
d32 = ca->tcp_cwnd - cwnd;
|
||
|
max_cnt = cwnd / d32;
|
||
|
if (ca->cnt > max_cnt)
|
||
|
ca->cnt = max_cnt;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
|
||
|
if (ca->cnt == 0) /* cannot be zero */
|
||
|
ca->cnt = 1;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Keep track of minimum rtt */
|
||
|
static inline void measure_delay(struct sock *sk)
|
||
|
{
|
||
|
const struct tcp_sock *tp = tcp_sk(sk);
|
||
|
struct bictcp *ca = inet_csk_ca(sk);
|
||
|
u32 delay;
|
||
|
|
||
|
/* No time stamp */
|
||
|
if (!(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) ||
|
||
|
/* Discard delay samples right after fast recovery */
|
||
|
(s32)(tcp_time_stamp - ca->epoch_start) < HZ)
|
||
|
return;
|
||
|
|
||
|
delay = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
|
||
|
if (delay == 0)
|
||
|
delay = 1;
|
||
|
|
||
|
/* first time call or link delay decreases */
|
||
|
if (ca->delay_min == 0 || ca->delay_min > delay)
|
||
|
ca->delay_min = delay;
|
||
|
}
|
||
|
|
||
|
static void bictcp_cong_avoid(struct sock *sk, u32 ack,
|
||
|
u32 seq_rtt, u32 in_flight, int data_acked)
|
||
|
{
|
||
|
struct tcp_sock *tp = tcp_sk(sk);
|
||
|
struct bictcp *ca = inet_csk_ca(sk);
|
||
|
|
||
|
if (data_acked)
|
||
|
measure_delay(sk);
|
||
|
|
||
|
if (!tcp_is_cwnd_limited(sk, in_flight))
|
||
|
return;
|
||
|
|
||
|
if (tp->snd_cwnd <= tp->snd_ssthresh)
|
||
|
tcp_slow_start(tp);
|
||
|
else {
|
||
|
bictcp_update(ca, tp->snd_cwnd);
|
||
|
|
||
|
/* In dangerous area, increase slowly.
|
||
|
* In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
|
||
|
*/
|
||
|
if (tp->snd_cwnd_cnt >= ca->cnt) {
|
||
|
if (tp->snd_cwnd < tp->snd_cwnd_clamp)
|
||
|
tp->snd_cwnd++;
|
||
|
tp->snd_cwnd_cnt = 0;
|
||
|
} else
|
||
|
tp->snd_cwnd_cnt++;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
static u32 bictcp_recalc_ssthresh(struct sock *sk)
|
||
|
{
|
||
|
const struct tcp_sock *tp = tcp_sk(sk);
|
||
|
struct bictcp *ca = inet_csk_ca(sk);
|
||
|
|
||
|
ca->epoch_start = 0; /* end of epoch */
|
||
|
|
||
|
/* Wmax and fast convergence */
|
||
|
if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
|
||
|
ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
|
||
|
/ (2 * BICTCP_BETA_SCALE);
|
||
|
else
|
||
|
ca->last_max_cwnd = tp->snd_cwnd;
|
||
|
|
||
|
ca->loss_cwnd = tp->snd_cwnd;
|
||
|
|
||
|
return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
|
||
|
}
|
||
|
|
||
|
static u32 bictcp_undo_cwnd(struct sock *sk)
|
||
|
{
|
||
|
struct bictcp *ca = inet_csk_ca(sk);
|
||
|
|
||
|
return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd);
|
||
|
}
|
||
|
|
||
|
static u32 bictcp_min_cwnd(struct sock *sk)
|
||
|
{
|
||
|
return tcp_sk(sk)->snd_ssthresh;
|
||
|
}
|
||
|
|
||
|
static void bictcp_state(struct sock *sk, u8 new_state)
|
||
|
{
|
||
|
if (new_state == TCP_CA_Loss)
|
||
|
bictcp_reset(inet_csk_ca(sk));
|
||
|
}
|
||
|
|
||
|
/* Track delayed acknowledgment ratio using sliding window
|
||
|
* ratio = (15*ratio + sample) / 16
|
||
|
*/
|
||
|
static void bictcp_acked(struct sock *sk, u32 cnt)
|
||
|
{
|
||
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
||
|
|
||
|
if (cnt > 0 && icsk->icsk_ca_state == TCP_CA_Open) {
|
||
|
struct bictcp *ca = inet_csk_ca(sk);
|
||
|
cnt -= ca->delayed_ack >> ACK_RATIO_SHIFT;
|
||
|
ca->delayed_ack += cnt;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
static struct tcp_congestion_ops cubictcp = {
|
||
|
.init = bictcp_init,
|
||
|
.ssthresh = bictcp_recalc_ssthresh,
|
||
|
.cong_avoid = bictcp_cong_avoid,
|
||
|
.set_state = bictcp_state,
|
||
|
.undo_cwnd = bictcp_undo_cwnd,
|
||
|
.min_cwnd = bictcp_min_cwnd,
|
||
|
.pkts_acked = bictcp_acked,
|
||
|
.owner = THIS_MODULE,
|
||
|
.name = "cubic",
|
||
|
};
|
||
|
|
||
|
static int __init cubictcp_register(void)
|
||
|
{
|
||
|
BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
|
||
|
return tcp_register_congestion_control(&cubictcp);
|
||
|
}
|
||
|
|
||
|
static void __exit cubictcp_unregister(void)
|
||
|
{
|
||
|
tcp_unregister_congestion_control(&cubictcp);
|
||
|
}
|
||
|
|
||
|
module_init(cubictcp_register);
|
||
|
module_exit(cubictcp_unregister);
|
||
|
|
||
|
MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
|
||
|
MODULE_LICENSE("GPL");
|
||
|
MODULE_DESCRIPTION("CUBIC TCP");
|
||
|
MODULE_VERSION("2.0");
|