aha/include/net/mac80211.h

1701 lines
62 KiB
C
Raw Normal View History

/*
* mac80211 <-> driver interface
*
* Copyright 2002-2005, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
* Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef MAC80211_H
#define MAC80211_H
#include <linux/kernel.h>
#include <linux/if_ether.h>
#include <linux/skbuff.h>
#include <linux/wireless.h>
#include <linux/device.h>
#include <linux/ieee80211.h>
#include <net/wireless.h>
#include <net/cfg80211.h>
/**
* DOC: Introduction
*
* mac80211 is the Linux stack for 802.11 hardware that implements
* only partial functionality in hard- or firmware. This document
* defines the interface between mac80211 and low-level hardware
* drivers.
*/
/**
* DOC: Calling mac80211 from interrupts
*
* Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
* called in hardware interrupt context. The low-level driver must not call any
* other functions in hardware interrupt context. If there is a need for such
* call, the low-level driver should first ACK the interrupt and perform the
* IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
* tasklet function.
*
* NOTE: If the driver opts to use the _irqsafe() functions, it may not also
* use the non-irqsafe functions!
*/
/**
* DOC: Warning
*
* If you're reading this document and not the header file itself, it will
* be incomplete because not all documentation has been converted yet.
*/
/**
* DOC: Frame format
*
* As a general rule, when frames are passed between mac80211 and the driver,
* they start with the IEEE 802.11 header and include the same octets that are
* sent over the air except for the FCS which should be calculated by the
* hardware.
*
* There are, however, various exceptions to this rule for advanced features:
*
* The first exception is for hardware encryption and decryption offload
* where the IV/ICV may or may not be generated in hardware.
*
* Secondly, when the hardware handles fragmentation, the frame handed to
* the driver from mac80211 is the MSDU, not the MPDU.
*
* Finally, for received frames, the driver is able to indicate that it has
* filled a radiotap header and put that in front of the frame; if it does
* not do so then mac80211 may add this under certain circumstances.
*/
/**
* enum ieee80211_notification_type - Low level driver notification
* @IEEE80211_NOTIFY_RE_ASSOC: start the re-association sequence
*/
enum ieee80211_notification_types {
IEEE80211_NOTIFY_RE_ASSOC,
};
/**
* struct ieee80211_ht_bss_info - describing BSS's HT characteristics
*
* This structure describes most essential parameters needed
* to describe 802.11n HT characteristics in a BSS
*
* @primary_channel: channel number of primery channel
* @bss_cap: 802.11n's general BSS capabilities (e.g. channel width)
* @bss_op_mode: 802.11n's BSS operation modes (e.g. HT protection)
*/
struct ieee80211_ht_bss_info {
u8 primary_channel;
u8 bss_cap; /* use IEEE80211_HT_IE_CHA_ */
u8 bss_op_mode; /* use IEEE80211_HT_IE_ */
};
/**
* struct ieee80211_tx_queue_params - transmit queue configuration
*
* The information provided in this structure is required for QoS
* transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
*
* @aifs: arbitration interface space [0..255, -1: use default]
* @cw_min: minimum contention window [will be a value of the form
* 2^n-1 in the range 1..1023; 0: use default]
* @cw_max: maximum contention window [like @cw_min]
* @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
*/
struct ieee80211_tx_queue_params {
s16 aifs;
u16 cw_min;
u16 cw_max;
u16 txop;
};
/**
* struct ieee80211_tx_queue_stats_data - transmit queue statistics
*
* @len: number of packets in queue
* @limit: queue length limit
* @count: number of frames sent
*/
struct ieee80211_tx_queue_stats_data {
unsigned int len;
unsigned int limit;
unsigned int count;
};
/**
* enum ieee80211_tx_queue - transmit queue number
*
* These constants are used with some callbacks that take a
* queue number to set parameters for a queue.
*
* @IEEE80211_TX_QUEUE_DATA0: data queue 0
* @IEEE80211_TX_QUEUE_DATA1: data queue 1
* @IEEE80211_TX_QUEUE_DATA2: data queue 2
* @IEEE80211_TX_QUEUE_DATA3: data queue 3
* @IEEE80211_TX_QUEUE_DATA4: data queue 4
* @IEEE80211_TX_QUEUE_SVP: ??
* @NUM_TX_DATA_QUEUES: number of data queues
* @IEEE80211_TX_QUEUE_AFTER_BEACON: transmit queue for frames to be
* sent after a beacon
* @IEEE80211_TX_QUEUE_BEACON: transmit queue for beacon frames
* @NUM_TX_DATA_QUEUES_AMPDU: adding more queues for A-MPDU
*/
enum ieee80211_tx_queue {
IEEE80211_TX_QUEUE_DATA0,
IEEE80211_TX_QUEUE_DATA1,
IEEE80211_TX_QUEUE_DATA2,
IEEE80211_TX_QUEUE_DATA3,
IEEE80211_TX_QUEUE_DATA4,
IEEE80211_TX_QUEUE_SVP,
NUM_TX_DATA_QUEUES,
/* due to stupidity in the sub-ioctl userspace interface, the items in
* this struct need to have fixed values. As soon as it is removed, we can
* fix these entries. */
IEEE80211_TX_QUEUE_AFTER_BEACON = 6,
IEEE80211_TX_QUEUE_BEACON = 7,
NUM_TX_DATA_QUEUES_AMPDU = 16
};
struct ieee80211_tx_queue_stats {
struct ieee80211_tx_queue_stats_data data[NUM_TX_DATA_QUEUES_AMPDU];
};
struct ieee80211_low_level_stats {
unsigned int dot11ACKFailureCount;
unsigned int dot11RTSFailureCount;
unsigned int dot11FCSErrorCount;
unsigned int dot11RTSSuccessCount;
};
/**
* enum ieee80211_bss_change - BSS change notification flags
*
* These flags are used with the bss_info_changed() callback
* to indicate which BSS parameter changed.
*
* @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
* also implies a change in the AID.
* @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
* @BSS_CHANGED_ERP_PREAMBLE: preamble changed
* @BSS_CHANGED_HT: 802.11n parameters changed
*/
enum ieee80211_bss_change {
BSS_CHANGED_ASSOC = 1<<0,
BSS_CHANGED_ERP_CTS_PROT = 1<<1,
BSS_CHANGED_ERP_PREAMBLE = 1<<2,
BSS_CHANGED_HT = 1<<4,
};
/**
* struct ieee80211_bss_conf - holds the BSS's changing parameters
*
* This structure keeps information about a BSS (and an association
* to that BSS) that can change during the lifetime of the BSS.
*
* @assoc: association status
* @aid: association ID number, valid only when @assoc is true
* @use_cts_prot: use CTS protection
* @use_short_preamble: use 802.11b short preamble
* @timestamp: beacon timestamp
* @beacon_int: beacon interval
* @assoc_capability: capabbilities taken from assoc resp
* @assoc_ht: association in HT mode
* @ht_conf: ht capabilities
* @ht_bss_conf: ht extended capabilities
*/
struct ieee80211_bss_conf {
/* association related data */
bool assoc;
u16 aid;
/* erp related data */
bool use_cts_prot;
bool use_short_preamble;
u16 beacon_int;
u16 assoc_capability;
u64 timestamp;
/* ht related data */
bool assoc_ht;
struct ieee80211_ht_info *ht_conf;
struct ieee80211_ht_bss_info *ht_bss_conf;
};
/**
* enum mac80211_tx_control_flags - flags to describe Tx configuration for
* the Tx frame
*
* These flags are used with the @flags member of &ieee80211_tx_control
*
* @IEEE80211_TXCTL_REQ_TX_STATUS: request TX status callback for this frame.
* @IEEE80211_TXCTL_DO_NOT_ENCRYPT: send this frame without encryption;
* e.g., for EAPOL frame
* @IEEE80211_TXCTL_USE_RTS_CTS: use RTS-CTS before sending frame
* @IEEE80211_TXCTL_USE_CTS_PROTECT: use CTS protection for the frame (e.g.,
* for combined 802.11g / 802.11b networks)
* @IEEE80211_TXCTL_NO_ACK: tell the low level not to wait for an ack
* @IEEE80211_TXCTL_RATE_CTRL_PROBE
* @EEE80211_TXCTL_CLEAR_PS_FILT: clear powersave filter
* for destination station
* @IEEE80211_TXCTL_REQUEUE:
* @IEEE80211_TXCTL_FIRST_FRAGMENT: this is a first fragment of the frame
* @IEEE80211_TXCTL_LONG_RETRY_LIMIT: this frame should be send using the
* through set_retry_limit configured long
* retry value
* @IEEE80211_TXCTL_EAPOL_FRAME: internal to mac80211
* @IEEE80211_TXCTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
* @IEEE80211_TXCTL_AMPDU: this frame should be sent as part of an A-MPDU
* @IEEE80211_TXCTL_OFDM_HT: this frame can be sent in HT OFDM rates. number
* of streams when this flag is on can be extracted
* from antenna_sel_tx, so if 1 antenna is marked
* use SISO, 2 antennas marked use MIMO, n antennas
* marked use MIMO_n.
* @IEEE80211_TXCTL_GREEN_FIELD: use green field protection for this frame
* @IEEE80211_TXCTL_40_MHZ_WIDTH: send this frame using 40 Mhz channel width
* @IEEE80211_TXCTL_DUP_DATA: duplicate data frame on both 20 Mhz channels
* @IEEE80211_TXCTL_SHORT_GI: send this frame using short guard interval
*/
enum mac80211_tx_control_flags {
IEEE80211_TXCTL_REQ_TX_STATUS = (1<<0),
IEEE80211_TXCTL_DO_NOT_ENCRYPT = (1<<1),
IEEE80211_TXCTL_USE_RTS_CTS = (1<<2),
IEEE80211_TXCTL_USE_CTS_PROTECT = (1<<3),
IEEE80211_TXCTL_NO_ACK = (1<<4),
IEEE80211_TXCTL_RATE_CTRL_PROBE = (1<<5),
IEEE80211_TXCTL_CLEAR_PS_FILT = (1<<6),
IEEE80211_TXCTL_REQUEUE = (1<<7),
IEEE80211_TXCTL_FIRST_FRAGMENT = (1<<8),
IEEE80211_TXCTL_SHORT_PREAMBLE = (1<<9),
IEEE80211_TXCTL_LONG_RETRY_LIMIT = (1<<10),
IEEE80211_TXCTL_EAPOL_FRAME = (1<<11),
IEEE80211_TXCTL_SEND_AFTER_DTIM = (1<<12),
IEEE80211_TXCTL_AMPDU = (1<<13),
IEEE80211_TXCTL_OFDM_HT = (1<<14),
IEEE80211_TXCTL_GREEN_FIELD = (1<<15),
IEEE80211_TXCTL_40_MHZ_WIDTH = (1<<16),
IEEE80211_TXCTL_DUP_DATA = (1<<17),
IEEE80211_TXCTL_SHORT_GI = (1<<18),
};
/* Transmit control fields. This data structure is passed to low-level driver
* with each TX frame. The low-level driver is responsible for configuring
* the hardware to use given values (depending on what is supported). */
struct ieee80211_tx_control {
struct ieee80211_vif *vif;
struct ieee80211_rate *tx_rate;
/* Transmit rate for RTS/CTS frame */
struct ieee80211_rate *rts_cts_rate;
/* retry rate for the last retries */
struct ieee80211_rate *alt_retry_rate;
u32 flags; /* tx control flags defined above */
u8 key_idx; /* keyidx from hw->set_key(), undefined if
* IEEE80211_TXCTL_DO_NOT_ENCRYPT is set */
u8 retry_limit; /* 1 = only first attempt, 2 = one retry, ..
* This could be used when set_retry_limit
* is not implemented by the driver */
u8 antenna_sel_tx; /* 0 = default/diversity, otherwise bit
* position represents antenna number used */
u8 icv_len; /* length of the ICV/MIC field in octets */
u8 iv_len; /* length of the IV field in octets */
u8 queue; /* hardware queue to use for this frame;
* 0 = highest, hw->queues-1 = lowest */
u16 aid; /* Station AID */
int type; /* internal */
};
/**
* enum mac80211_rx_flags - receive flags
*
* These flags are used with the @flag member of &struct ieee80211_rx_status.
* @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
* Use together with %RX_FLAG_MMIC_STRIPPED.
* @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
* @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
* @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
* verification has been done by the hardware.
* @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
* If this flag is set, the stack cannot do any replay detection
* hence the driver or hardware will have to do that.
* @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
* the frame.
* @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
* the frame.
* @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
* is valid. This is useful in monitor mode and necessary for beacon frames
* to enable IBSS merging.
*/
enum mac80211_rx_flags {
RX_FLAG_MMIC_ERROR = 1<<0,
RX_FLAG_DECRYPTED = 1<<1,
RX_FLAG_RADIOTAP = 1<<2,
RX_FLAG_MMIC_STRIPPED = 1<<3,
RX_FLAG_IV_STRIPPED = 1<<4,
RX_FLAG_FAILED_FCS_CRC = 1<<5,
RX_FLAG_FAILED_PLCP_CRC = 1<<6,
RX_FLAG_TSFT = 1<<7,
};
/**
* struct ieee80211_rx_status - receive status
*
* The low-level driver should provide this information (the subset
* supported by hardware) to the 802.11 code with each received
* frame.
* @mactime: value in microseconds of the 64-bit Time Synchronization Function
* (TSF) timer when the first data symbol (MPDU) arrived at the hardware.
* @band: the active band when this frame was received
* @freq: frequency the radio was tuned to when receiving this frame, in MHz
* @ssi: signal strength when receiving this frame
* @signal: used as 'qual' in statistics reporting
* @noise: PHY noise when receiving this frame
* @antenna: antenna used
* @rate_idx: index of data rate into band's supported rates
* @flag: %RX_FLAG_*
*/
struct ieee80211_rx_status {
u64 mactime;
enum ieee80211_band band;
int freq;
int ssi;
int signal;
int noise;
int antenna;
int rate_idx;
int flag;
};
/**
* enum ieee80211_tx_status_flags - transmit status flags
*
* Status flags to indicate various transmit conditions.
*
* @IEEE80211_TX_STATUS_TX_FILTERED: The frame was not transmitted
* because the destination STA was in powersave mode.
* @IEEE80211_TX_STATUS_ACK: Frame was acknowledged
* @IEEE80211_TX_STATUS_AMPDU: The frame was aggregated, so status
* is for the whole aggregation.
*/
enum ieee80211_tx_status_flags {
IEEE80211_TX_STATUS_TX_FILTERED = 1<<0,
IEEE80211_TX_STATUS_ACK = 1<<1,
IEEE80211_TX_STATUS_AMPDU = 1<<2,
};
/**
* struct ieee80211_tx_status - transmit status
*
* As much information as possible should be provided for each transmitted
* frame with ieee80211_tx_status().
*
* @control: a copy of the &struct ieee80211_tx_control passed to the driver
* in the tx() callback.
* @flags: transmit status flags, defined above
* @retry_count: number of retries
* @excessive_retries: set to 1 if the frame was retried many times
* but not acknowledged
* @ampdu_ack_len: number of aggregated frames.
* relevant only if IEEE80211_TX_STATUS_AMPDU was set.
* @ampdu_ack_map: block ack bit map for the aggregation.
* relevant only if IEEE80211_TX_STATUS_AMPDU was set.
* @ack_signal: signal strength of the ACK frame
* @queue_length: ?? REMOVE
* @queue_number: ?? REMOVE
*/
struct ieee80211_tx_status {
struct ieee80211_tx_control control;
u8 flags;
u8 retry_count;
bool excessive_retries;
u8 ampdu_ack_len;
u64 ampdu_ack_map;
int ack_signal;
int queue_length;
int queue_number;
};
/**
* enum ieee80211_conf_flags - configuration flags
*
* Flags to define PHY configuration options
*
* @IEEE80211_CONF_SHORT_SLOT_TIME: use 802.11g short slot time
* @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
* @IEEE80211_CONF_SUPPORT_HT_MODE: use 802.11n HT capabilities (if supported)
*/
enum ieee80211_conf_flags {
IEEE80211_CONF_SHORT_SLOT_TIME = (1<<0),
IEEE80211_CONF_RADIOTAP = (1<<1),
IEEE80211_CONF_SUPPORT_HT_MODE = (1<<2),
};
/**
* struct ieee80211_conf - configuration of the device
*
* This struct indicates how the driver shall configure the hardware.
*
* @radio_enabled: when zero, driver is required to switch off the radio.
* TODO make a flag
* @beacon_int: beacon interval (TODO make interface config)
* @flags: configuration flags defined above
* @power_level: requested transmit power (in dBm)
* @max_antenna_gain: maximum antenna gain (in dBi)
* @antenna_sel_tx: transmit antenna selection, 0: default/diversity,
* 1/2: antenna 0/1
* @antenna_sel_rx: receive antenna selection, like @antenna_sel_tx
* @ht_conf: describes current self configuration of 802.11n HT capabilies
* @ht_bss_conf: describes current BSS configuration of 802.11n HT parameters
* @channel: the channel to tune to
*/
struct ieee80211_conf {
int radio_enabled;
int beacon_int;
u32 flags;
int power_level;
int max_antenna_gain;
u8 antenna_sel_tx;
u8 antenna_sel_rx;
struct ieee80211_channel *channel;
struct ieee80211_ht_info ht_conf;
struct ieee80211_ht_bss_info ht_bss_conf;
};
/**
* enum ieee80211_if_types - types of 802.11 network interfaces
*
* @IEEE80211_IF_TYPE_INVALID: invalid interface type, not used
* by mac80211 itself
* @IEEE80211_IF_TYPE_AP: interface in AP mode.
* @IEEE80211_IF_TYPE_MGMT: special interface for communication with hostap
* daemon. Drivers should never see this type.
* @IEEE80211_IF_TYPE_STA: interface in STA (client) mode.
* @IEEE80211_IF_TYPE_IBSS: interface in IBSS (ad-hoc) mode.
* @IEEE80211_IF_TYPE_MNTR: interface in monitor (rfmon) mode.
* @IEEE80211_IF_TYPE_WDS: interface in WDS mode.
* @IEEE80211_IF_TYPE_VLAN: VLAN interface bound to an AP, drivers
* will never see this type.
* @IEEE80211_IF_TYPE_MESH_POINT: 802.11s mesh point
*/
enum ieee80211_if_types {
IEEE80211_IF_TYPE_INVALID,
IEEE80211_IF_TYPE_AP,
IEEE80211_IF_TYPE_STA,
IEEE80211_IF_TYPE_IBSS,
IEEE80211_IF_TYPE_MESH_POINT,
IEEE80211_IF_TYPE_MNTR,
IEEE80211_IF_TYPE_WDS,
IEEE80211_IF_TYPE_VLAN,
};
/**
* struct ieee80211_vif - per-interface data
*
* Data in this structure is continually present for driver
* use during the life of a virtual interface.
*
* @type: type of this virtual interface
* @drv_priv: data area for driver use, will always be aligned to
* sizeof(void *).
*/
struct ieee80211_vif {
enum ieee80211_if_types type;
/* must be last */
u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
};
static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
{
#ifdef CONFIG_MAC80211_MESH
return vif->type == IEEE80211_IF_TYPE_MESH_POINT;
#endif
return false;
}
/**
* struct ieee80211_if_init_conf - initial configuration of an interface
*
* @vif: pointer to a driver-use per-interface structure. The pointer
* itself is also used for various functions including
* ieee80211_beacon_get() and ieee80211_get_buffered_bc().
* @type: one of &enum ieee80211_if_types constants. Determines the type of
* added/removed interface.
* @mac_addr: pointer to MAC address of the interface. This pointer is valid
* until the interface is removed (i.e. it cannot be used after
* remove_interface() callback was called for this interface).
*
* This structure is used in add_interface() and remove_interface()
* callbacks of &struct ieee80211_hw.
*
* When you allow multiple interfaces to be added to your PHY, take care
* that the hardware can actually handle multiple MAC addresses. However,
* also take care that when there's no interface left with mac_addr != %NULL
* you remove the MAC address from the device to avoid acknowledging packets
* in pure monitor mode.
*/
struct ieee80211_if_init_conf {
enum ieee80211_if_types type;
struct ieee80211_vif *vif;
void *mac_addr;
};
/**
* struct ieee80211_if_conf - configuration of an interface
*
* @type: type of the interface. This is always the same as was specified in
* &struct ieee80211_if_init_conf. The type of an interface never changes
* during the life of the interface; this field is present only for
* convenience.
* @bssid: BSSID of the network we are associated to/creating.
* @ssid: used (together with @ssid_len) by drivers for hardware that
* generate beacons independently. The pointer is valid only during the
* config_interface() call, so copy the value somewhere if you need
* it.
* @ssid_len: length of the @ssid field.
* @beacon: beacon template. Valid only if @host_gen_beacon_template in
* &struct ieee80211_hw is set. The driver is responsible of freeing
* the sk_buff.
* @beacon_control: tx_control for the beacon template, this field is only
* valid when the @beacon field was set.
*
* This structure is passed to the config_interface() callback of
* &struct ieee80211_hw.
*/
struct ieee80211_if_conf {
int type;
u8 *bssid;
u8 *ssid;
size_t ssid_len;
struct sk_buff *beacon;
struct ieee80211_tx_control *beacon_control;
};
/**
* enum ieee80211_key_alg - key algorithm
* @ALG_WEP: WEP40 or WEP104
* @ALG_TKIP: TKIP
* @ALG_CCMP: CCMP (AES)
*/
enum ieee80211_key_alg {
ALG_WEP,
ALG_TKIP,
ALG_CCMP,
};
/**
* enum ieee80211_key_flags - key flags
*
* These flags are used for communication about keys between the driver
* and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
*
* @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
* that the STA this key will be used with could be using QoS.
* @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
* driver to indicate that it requires IV generation for this
* particular key.
* @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
* the driver for a TKIP key if it requires Michael MIC
* generation in software.
*/
enum ieee80211_key_flags {
IEEE80211_KEY_FLAG_WMM_STA = 1<<0,
IEEE80211_KEY_FLAG_GENERATE_IV = 1<<1,
IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
};
[MAC80211]: rework key handling This moves all the key handling code out from ieee80211_ioctl.c into key.c and also does the following changes including documentation updates in mac80211.h: 1) Turn off hardware acceleration for keys when the interface is down. This is necessary because otherwise monitor interfaces could be decrypting frames for other interfaces that are down at the moment. Also, it should go some way towards better suspend/resume support, in any case the routines used here could be used for that as well. Additionally, this makes the driver interface nicer, keys for a specific local MAC address are only ever present while an interface with that MAC address is enabled. 2) Change driver set_key() callback interface to allow only return values of -ENOSPC, -EOPNOTSUPP and 0, warn on all other return values. This allows debugging the stack when a driver notices it's handed a key while it is down. 3) Invert the flag meaning to KEY_FLAG_UPLOADED_TO_HARDWARE. 4) Remove REMOVE_ALL_KEYS command as it isn't used nor do we want to use it, we'll use DISABLE_KEY for each key. It is hard to use REMOVE_ALL_KEYS because we can handle multiple virtual interfaces with different key configuration, so we'd have to keep track of a lot of state for this and that isn't worth it. 5) Warn when disabling a key fails, it musn't. 6) Remove IEEE80211_HW_NO_TKIP_WMM_HWACCEL in favour of per-key IEEE80211_KEY_FLAG_WMM_STA to let driver sort it out itself. 7) Tell driver that a (non-WEP) key is used only for transmission by using an all-zeroes station MAC address when configuring. 8) Change the set_key() callback to have access to the local MAC address the key is being added for. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Acked-by: Michael Wu <flamingice@sourmilk.net> Signed-off-by: John W. Linville <linville@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-08-28 21:01:55 +00:00
/**
* struct ieee80211_key_conf - key information
*
* This key information is given by mac80211 to the driver by
* the set_key() callback in &struct ieee80211_ops.
*
* @hw_key_idx: To be set by the driver, this is the key index the driver
* wants to be given when a frame is transmitted and needs to be
* encrypted in hardware.
* @alg: The key algorithm.
* @flags: key flags, see &enum ieee80211_key_flags.
* @keyidx: the key index (0-3)
* @keylen: key material length
* @key: key material
*/
struct ieee80211_key_conf {
enum ieee80211_key_alg alg;
u8 hw_key_idx;
[MAC80211]: rework key handling This moves all the key handling code out from ieee80211_ioctl.c into key.c and also does the following changes including documentation updates in mac80211.h: 1) Turn off hardware acceleration for keys when the interface is down. This is necessary because otherwise monitor interfaces could be decrypting frames for other interfaces that are down at the moment. Also, it should go some way towards better suspend/resume support, in any case the routines used here could be used for that as well. Additionally, this makes the driver interface nicer, keys for a specific local MAC address are only ever present while an interface with that MAC address is enabled. 2) Change driver set_key() callback interface to allow only return values of -ENOSPC, -EOPNOTSUPP and 0, warn on all other return values. This allows debugging the stack when a driver notices it's handed a key while it is down. 3) Invert the flag meaning to KEY_FLAG_UPLOADED_TO_HARDWARE. 4) Remove REMOVE_ALL_KEYS command as it isn't used nor do we want to use it, we'll use DISABLE_KEY for each key. It is hard to use REMOVE_ALL_KEYS because we can handle multiple virtual interfaces with different key configuration, so we'd have to keep track of a lot of state for this and that isn't worth it. 5) Warn when disabling a key fails, it musn't. 6) Remove IEEE80211_HW_NO_TKIP_WMM_HWACCEL in favour of per-key IEEE80211_KEY_FLAG_WMM_STA to let driver sort it out itself. 7) Tell driver that a (non-WEP) key is used only for transmission by using an all-zeroes station MAC address when configuring. 8) Change the set_key() callback to have access to the local MAC address the key is being added for. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Acked-by: Michael Wu <flamingice@sourmilk.net> Signed-off-by: John W. Linville <linville@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-08-28 21:01:55 +00:00
u8 flags;
s8 keyidx;
u8 keylen;
u8 key[0];
};
/**
* enum set_key_cmd - key command
*
* Used with the set_key() callback in &struct ieee80211_ops, this
* indicates whether a key is being removed or added.
*
* @SET_KEY: a key is set
* @DISABLE_KEY: a key must be disabled
*/
enum set_key_cmd {
[MAC80211]: rework key handling This moves all the key handling code out from ieee80211_ioctl.c into key.c and also does the following changes including documentation updates in mac80211.h: 1) Turn off hardware acceleration for keys when the interface is down. This is necessary because otherwise monitor interfaces could be decrypting frames for other interfaces that are down at the moment. Also, it should go some way towards better suspend/resume support, in any case the routines used here could be used for that as well. Additionally, this makes the driver interface nicer, keys for a specific local MAC address are only ever present while an interface with that MAC address is enabled. 2) Change driver set_key() callback interface to allow only return values of -ENOSPC, -EOPNOTSUPP and 0, warn on all other return values. This allows debugging the stack when a driver notices it's handed a key while it is down. 3) Invert the flag meaning to KEY_FLAG_UPLOADED_TO_HARDWARE. 4) Remove REMOVE_ALL_KEYS command as it isn't used nor do we want to use it, we'll use DISABLE_KEY for each key. It is hard to use REMOVE_ALL_KEYS because we can handle multiple virtual interfaces with different key configuration, so we'd have to keep track of a lot of state for this and that isn't worth it. 5) Warn when disabling a key fails, it musn't. 6) Remove IEEE80211_HW_NO_TKIP_WMM_HWACCEL in favour of per-key IEEE80211_KEY_FLAG_WMM_STA to let driver sort it out itself. 7) Tell driver that a (non-WEP) key is used only for transmission by using an all-zeroes station MAC address when configuring. 8) Change the set_key() callback to have access to the local MAC address the key is being added for. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Acked-by: Michael Wu <flamingice@sourmilk.net> Signed-off-by: John W. Linville <linville@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-08-28 21:01:55 +00:00
SET_KEY, DISABLE_KEY,
};
/**
* enum sta_notify_cmd - sta notify command
*
* Used with the sta_notify() callback in &struct ieee80211_ops, this
* indicates addition and removal of a station to station table
*
* @STA_NOTIFY_ADD: a station was added to the station table
* @STA_NOTIFY_REMOVE: a station being removed from the station table
*/
enum sta_notify_cmd {
STA_NOTIFY_ADD, STA_NOTIFY_REMOVE
};
/**
* enum ieee80211_tkip_key_type - get tkip key
*
* Used by drivers which need to get a tkip key for skb. Some drivers need a
* phase 1 key, others need a phase 2 key. A single function allows the driver
* to get the key, this enum indicates what type of key is required.
*
* @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
* @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
*/
enum ieee80211_tkip_key_type {
IEEE80211_TKIP_P1_KEY,
IEEE80211_TKIP_P2_KEY,
};
/**
* enum ieee80211_hw_flags - hardware flags
*
* These flags are used to indicate hardware capabilities to
* the stack. Generally, flags here should have their meaning
* done in a way that the simplest hardware doesn't need setting
* any particular flags. There are some exceptions to this rule,
* however, so you are advised to review these flags carefully.
*
* @IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE:
* The device only needs to be supplied with a beacon template.
* If you need the host to generate each beacon then don't use
* this flag and call ieee80211_beacon_get() when you need the
* next beacon frame. Note that if you set this flag, you must
* implement the set_tim() callback for powersave mode to work
* properly.
* This flag is only relevant for access-point mode.
*
* @IEEE80211_HW_RX_INCLUDES_FCS:
* Indicates that received frames passed to the stack include
* the FCS at the end.
*
* @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
* Some wireless LAN chipsets buffer broadcast/multicast frames
* for power saving stations in the hardware/firmware and others
* rely on the host system for such buffering. This option is used
* to configure the IEEE 802.11 upper layer to buffer broadcast and
* multicast frames when there are power saving stations so that
* the driver can fetch them with ieee80211_get_buffered_bc(). Note
* that not setting this flag works properly only when the
* %IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE is also not set because
* otherwise the stack will not know when the DTIM beacon was sent.
*
* @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
* Hardware is not capable of short slot operation on the 2.4 GHz band.
*
* @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
* Hardware is not capable of receiving frames with short preamble on
* the 2.4 GHz band.
*/
enum ieee80211_hw_flags {
IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE = 1<<0,
IEEE80211_HW_RX_INCLUDES_FCS = 1<<1,
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING = 1<<2,
IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE = 1<<3,
IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE = 1<<4,
};
/**
* struct ieee80211_hw - hardware information and state
*
* This structure contains the configuration and hardware
* information for an 802.11 PHY.
*
* @wiphy: This points to the &struct wiphy allocated for this
* 802.11 PHY. You must fill in the @perm_addr and @dev
* members of this structure using SET_IEEE80211_DEV()
* and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
* bands (with channels, bitrates) are registered here.
*
* @conf: &struct ieee80211_conf, device configuration, don't use.
*
* @workqueue: single threaded workqueue available for driver use,
* allocated by mac80211 on registration and flushed on
* unregistration.
*
* @priv: pointer to private area that was allocated for driver use
* along with this structure.
*
* @flags: hardware flags, see &enum ieee80211_hw_flags.
*
* @extra_tx_headroom: headroom to reserve in each transmit skb
* for use by the driver (e.g. for transmit headers.)
*
* @channel_change_time: time (in microseconds) it takes to change channels.
*
* @max_rssi: Maximum value for ssi in RX information, use
* negative numbers for dBm and 0 to indicate no support.
*
* @max_signal: like @max_rssi, but for the signal value.
*
* @max_noise: like @max_rssi, but for the noise value.
*
* @queues: number of available hardware transmit queues for
* data packets. WMM/QoS requires at least four.
*
* @rate_control_algorithm: rate control algorithm for this hardware.
* If unset (NULL), the default algorithm will be used. Must be
* set before calling ieee80211_register_hw().
*
* @vif_data_size: size (in bytes) of the drv_priv data area
* within &struct ieee80211_vif.
*/
struct ieee80211_hw {
struct ieee80211_conf conf;
struct wiphy *wiphy;
struct workqueue_struct *workqueue;
const char *rate_control_algorithm;
void *priv;
u32 flags;
unsigned int extra_tx_headroom;
int channel_change_time;
int vif_data_size;
u8 queues;
s8 max_rssi;
s8 max_signal;
s8 max_noise;
};
/**
* SET_IEEE80211_DEV - set device for 802.11 hardware
*
* @hw: the &struct ieee80211_hw to set the device for
* @dev: the &struct device of this 802.11 device
*/
static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
{
set_wiphy_dev(hw->wiphy, dev);
}
/**
* SET_IEEE80211_PERM_ADDR - set the permanenet MAC address for 802.11 hardware
*
* @hw: the &struct ieee80211_hw to set the MAC address for
* @addr: the address to set
*/
static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
{
memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
}
/**
* DOC: Hardware crypto acceleration
*
* mac80211 is capable of taking advantage of many hardware
* acceleration designs for encryption and decryption operations.
*
* The set_key() callback in the &struct ieee80211_ops for a given
* device is called to enable hardware acceleration of encryption and
* decryption. The callback takes an @address parameter that will be
* the broadcast address for default keys, the other station's hardware
* address for individual keys or the zero address for keys that will
* be used only for transmission.
* Multiple transmission keys with the same key index may be used when
* VLANs are configured for an access point.
[PATCH] mac80211: revamp interface and filter configuration Drivers are currently supposed to keep track of monitor interfaces if they allow so-called "hard" monitor, and they are also supposed to keep track of multicast etc. This patch changes that, replaces the set_multicast_list() callback with a new configure_filter() callback that takes filter flags (FIF_*) instead of interface flags (IFF_*). For a driver, this means it should open the filter as much as necessary to get all frames requested by the filter flags. Accordingly, the filter flags are named "positively", e.g. FIF_ALLMULTI. Multicast filtering is a bit special in that drivers that have no multicast address filters need to allow multicast frames through when either the FIF_ALLMULTI flag is set or when the mc_count value is positive. At the same time, drivers are no longer notified about monitor interfaces at all, this means they now need to implement the start() and stop() callbacks and the new change_filter_flags() callback. Also, the start()/stop() ordering changed, start() is now called *before* any add_interface() as it really should be, and stop() after any remove_interface(). The patch also changes the behaviour of setting the bssid to multicast for scanning when IEEE80211_HW_NO_PROBE_FILTERING is set; the IEEE80211_HW_NO_PROBE_FILTERING flag is removed and the filter flag FIF_BCN_PRBRESP_PROMISC introduced. This is a lot more efficient for hardware like b43 that supports it and other hardware can still set the BSSID to all-ones. Driver modifications by Johannes Berg (b43 & iwlwifi), Michael Wu (rtl8187, adm8211, and p54), Larry Finger (b43legacy), and Ivo van Doorn (rt2x00). Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: Michael Wu <flamingice@sourmilk.net> Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2007-09-17 05:29:23 +00:00
*
* The @local_address parameter will always be set to our own address,
* this is only relevant if you support multiple local addresses.
*
* When transmitting, the TX control data will use the @hw_key_idx
* selected by the driver by modifying the &struct ieee80211_key_conf
* pointed to by the @key parameter to the set_key() function.
*
* The set_key() call for the %SET_KEY command should return 0 if
* the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
* added; if you return 0 then hw_key_idx must be assigned to the
* hardware key index, you are free to use the full u8 range.
*
* When the cmd is %DISABLE_KEY then it must succeed.
*
* Note that it is permissible to not decrypt a frame even if a key
* for it has been uploaded to hardware, the stack will not make any
* decision based on whether a key has been uploaded or not but rather
* based on the receive flags.
*
* The &struct ieee80211_key_conf structure pointed to by the @key
* parameter is guaranteed to be valid until another call to set_key()
* removes it, but it can only be used as a cookie to differentiate
* keys.
*
* In TKIP some HW need to be provided a phase 1 key, for RX decryption
* acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
* handler.
* The update_tkip_key() call updates the driver with the new phase 1 key.
* This happens everytime the iv16 wraps around (every 65536 packets). The
* set_key() call will happen only once for each key (unless the AP did
* rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
* provided by udpate_tkip_key only. The trigger that makes mac80211 call this
* handler is software decryption with wrap around of iv16.
[PATCH] mac80211: revamp interface and filter configuration Drivers are currently supposed to keep track of monitor interfaces if they allow so-called "hard" monitor, and they are also supposed to keep track of multicast etc. This patch changes that, replaces the set_multicast_list() callback with a new configure_filter() callback that takes filter flags (FIF_*) instead of interface flags (IFF_*). For a driver, this means it should open the filter as much as necessary to get all frames requested by the filter flags. Accordingly, the filter flags are named "positively", e.g. FIF_ALLMULTI. Multicast filtering is a bit special in that drivers that have no multicast address filters need to allow multicast frames through when either the FIF_ALLMULTI flag is set or when the mc_count value is positive. At the same time, drivers are no longer notified about monitor interfaces at all, this means they now need to implement the start() and stop() callbacks and the new change_filter_flags() callback. Also, the start()/stop() ordering changed, start() is now called *before* any add_interface() as it really should be, and stop() after any remove_interface(). The patch also changes the behaviour of setting the bssid to multicast for scanning when IEEE80211_HW_NO_PROBE_FILTERING is set; the IEEE80211_HW_NO_PROBE_FILTERING flag is removed and the filter flag FIF_BCN_PRBRESP_PROMISC introduced. This is a lot more efficient for hardware like b43 that supports it and other hardware can still set the BSSID to all-ones. Driver modifications by Johannes Berg (b43 & iwlwifi), Michael Wu (rtl8187, adm8211, and p54), Larry Finger (b43legacy), and Ivo van Doorn (rt2x00). Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: Michael Wu <flamingice@sourmilk.net> Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2007-09-17 05:29:23 +00:00
*/
/**
* DOC: Frame filtering
*
* mac80211 requires to see many management frames for proper
* operation, and users may want to see many more frames when
* in monitor mode. However, for best CPU usage and power consumption,
* having as few frames as possible percolate through the stack is
* desirable. Hence, the hardware should filter as much as possible.
*
* To achieve this, mac80211 uses filter flags (see below) to tell
* the driver's configure_filter() function which frames should be
* passed to mac80211 and which should be filtered out.
*
* The configure_filter() callback is invoked with the parameters
* @mc_count and @mc_list for the combined multicast address list
* of all virtual interfaces, @changed_flags telling which flags
* were changed and @total_flags with the new flag states.
*
* If your device has no multicast address filters your driver will
* need to check both the %FIF_ALLMULTI flag and the @mc_count
* parameter to see whether multicast frames should be accepted
* or dropped.
*
* All unsupported flags in @total_flags must be cleared.
* Hardware does not support a flag if it is incapable of _passing_
* the frame to the stack. Otherwise the driver must ignore
* the flag, but not clear it.
* You must _only_ clear the flag (announce no support for the
* flag to mac80211) if you are not able to pass the packet type
* to the stack (so the hardware always filters it).
* So for example, you should clear @FIF_CONTROL, if your hardware
* always filters control frames. If your hardware always passes
* control frames to the kernel and is incapable of filtering them,
* you do _not_ clear the @FIF_CONTROL flag.
* This rule applies to all other FIF flags as well.
[PATCH] mac80211: revamp interface and filter configuration Drivers are currently supposed to keep track of monitor interfaces if they allow so-called "hard" monitor, and they are also supposed to keep track of multicast etc. This patch changes that, replaces the set_multicast_list() callback with a new configure_filter() callback that takes filter flags (FIF_*) instead of interface flags (IFF_*). For a driver, this means it should open the filter as much as necessary to get all frames requested by the filter flags. Accordingly, the filter flags are named "positively", e.g. FIF_ALLMULTI. Multicast filtering is a bit special in that drivers that have no multicast address filters need to allow multicast frames through when either the FIF_ALLMULTI flag is set or when the mc_count value is positive. At the same time, drivers are no longer notified about monitor interfaces at all, this means they now need to implement the start() and stop() callbacks and the new change_filter_flags() callback. Also, the start()/stop() ordering changed, start() is now called *before* any add_interface() as it really should be, and stop() after any remove_interface(). The patch also changes the behaviour of setting the bssid to multicast for scanning when IEEE80211_HW_NO_PROBE_FILTERING is set; the IEEE80211_HW_NO_PROBE_FILTERING flag is removed and the filter flag FIF_BCN_PRBRESP_PROMISC introduced. This is a lot more efficient for hardware like b43 that supports it and other hardware can still set the BSSID to all-ones. Driver modifications by Johannes Berg (b43 & iwlwifi), Michael Wu (rtl8187, adm8211, and p54), Larry Finger (b43legacy), and Ivo van Doorn (rt2x00). Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: Michael Wu <flamingice@sourmilk.net> Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2007-09-17 05:29:23 +00:00
*/
/**
* enum ieee80211_filter_flags - hardware filter flags
*
* These flags determine what the filter in hardware should be
* programmed to let through and what should not be passed to the
* stack. It is always safe to pass more frames than requested,
* but this has negative impact on power consumption.
*
* @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
* think of the BSS as your network segment and then this corresponds
* to the regular ethernet device promiscuous mode.
*
* @FIF_ALLMULTI: pass all multicast frames, this is used if requested
* by the user or if the hardware is not capable of filtering by
* multicast address.
*
* @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
* %RX_FLAG_FAILED_FCS_CRC for them)
*
* @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
* the %RX_FLAG_FAILED_PLCP_CRC for them
*
* @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
* to the hardware that it should not filter beacons or probe responses
* by BSSID. Filtering them can greatly reduce the amount of processing
* mac80211 needs to do and the amount of CPU wakeups, so you should
* honour this flag if possible.
*
* @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then
* only those addressed to this station
*
* @FIF_OTHER_BSS: pass frames destined to other BSSes
[PATCH] mac80211: revamp interface and filter configuration Drivers are currently supposed to keep track of monitor interfaces if they allow so-called "hard" monitor, and they are also supposed to keep track of multicast etc. This patch changes that, replaces the set_multicast_list() callback with a new configure_filter() callback that takes filter flags (FIF_*) instead of interface flags (IFF_*). For a driver, this means it should open the filter as much as necessary to get all frames requested by the filter flags. Accordingly, the filter flags are named "positively", e.g. FIF_ALLMULTI. Multicast filtering is a bit special in that drivers that have no multicast address filters need to allow multicast frames through when either the FIF_ALLMULTI flag is set or when the mc_count value is positive. At the same time, drivers are no longer notified about monitor interfaces at all, this means they now need to implement the start() and stop() callbacks and the new change_filter_flags() callback. Also, the start()/stop() ordering changed, start() is now called *before* any add_interface() as it really should be, and stop() after any remove_interface(). The patch also changes the behaviour of setting the bssid to multicast for scanning when IEEE80211_HW_NO_PROBE_FILTERING is set; the IEEE80211_HW_NO_PROBE_FILTERING flag is removed and the filter flag FIF_BCN_PRBRESP_PROMISC introduced. This is a lot more efficient for hardware like b43 that supports it and other hardware can still set the BSSID to all-ones. Driver modifications by Johannes Berg (b43 & iwlwifi), Michael Wu (rtl8187, adm8211, and p54), Larry Finger (b43legacy), and Ivo van Doorn (rt2x00). Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: Michael Wu <flamingice@sourmilk.net> Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2007-09-17 05:29:23 +00:00
*/
enum ieee80211_filter_flags {
FIF_PROMISC_IN_BSS = 1<<0,
FIF_ALLMULTI = 1<<1,
FIF_FCSFAIL = 1<<2,
FIF_PLCPFAIL = 1<<3,
FIF_BCN_PRBRESP_PROMISC = 1<<4,
FIF_CONTROL = 1<<5,
FIF_OTHER_BSS = 1<<6,
};
/**
* enum ieee80211_ampdu_mlme_action - A-MPDU actions
*
* These flags are used with the ampdu_action() callback in
* &struct ieee80211_ops to indicate which action is needed.
* @IEEE80211_AMPDU_RX_START: start Rx aggregation
* @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
* @IEEE80211_AMPDU_TX_START: start Tx aggregation
* @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
*/
enum ieee80211_ampdu_mlme_action {
IEEE80211_AMPDU_RX_START,
IEEE80211_AMPDU_RX_STOP,
IEEE80211_AMPDU_TX_START,
IEEE80211_AMPDU_TX_STOP,
};
/**
* struct ieee80211_ops - callbacks from mac80211 to the driver
*
* This structure contains various callbacks that the driver may
* handle or, in some cases, must handle, for example to configure
* the hardware to a new channel or to transmit a frame.
*
* @tx: Handler that 802.11 module calls for each transmitted frame.
* skb contains the buffer starting from the IEEE 802.11 header.
* The low-level driver should send the frame out based on
* configuration in the TX control data. Must be implemented and
* atomic.
*
* @start: Called before the first netdevice attached to the hardware
* is enabled. This should turn on the hardware and must turn on
* frame reception (for possibly enabled monitor interfaces.)
* Returns negative error codes, these may be seen in userspace,
* or zero.
* When the device is started it should not have a MAC address
* to avoid acknowledging frames before a non-monitor device
* is added.
* Must be implemented.
*
* @stop: Called after last netdevice attached to the hardware
* is disabled. This should turn off the hardware (at least
* it must turn off frame reception.)
* May be called right after add_interface if that rejects
* an interface.
* Must be implemented.
*
* @add_interface: Called when a netdevice attached to the hardware is
* enabled. Because it is not called for monitor mode devices, @open
* and @stop must be implemented.
* The driver should perform any initialization it needs before
* the device can be enabled. The initial configuration for the
* interface is given in the conf parameter.
* The callback may refuse to add an interface by returning a
* negative error code (which will be seen in userspace.)
* Must be implemented.
*
* @remove_interface: Notifies a driver that an interface is going down.
* The @stop callback is called after this if it is the last interface
* and no monitor interfaces are present.
* When all interfaces are removed, the MAC address in the hardware
* must be cleared so the device no longer acknowledges packets,
* the mac_addr member of the conf structure is, however, set to the
* MAC address of the device going away.
* Hence, this callback must be implemented.
*
* @config: Handler for configuration requests. IEEE 802.11 code calls this
* function to change hardware configuration, e.g., channel.
*
* @config_interface: Handler for configuration requests related to interfaces
* (e.g. BSSID changes.)
*
* @bss_info_changed: Handler for configuration requests related to BSS
* parameters that may vary during BSS's lifespan, and may affect low
* level driver (e.g. assoc/disassoc status, erp parameters).
* This function should not be used if no BSS has been set, unless
* for association indication. The @changed parameter indicates which
* of the bss parameters has changed when a call is made. This callback
* has to be atomic.
*
* @configure_filter: Configure the device's RX filter.
* See the section "Frame filtering" for more information.
* This callback must be implemented and atomic.
*
* @set_tim: Set TIM bit. If the hardware/firmware takes care of beacon
* generation (that is, %IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE is set)
* mac80211 calls this function when a TIM bit must be set or cleared
* for a given AID. Must be atomic.
*
* @set_key: See the section "Hardware crypto acceleration"
* This callback can sleep, and is only called between add_interface
* and remove_interface calls, i.e. while the interface with the
* given local_address is enabled.
*
* @update_tkip_key: See the section "Hardware crypto acceleration"
* This callback will be called in the context of Rx. Called for drivers
* which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
*
* @hw_scan: Ask the hardware to service the scan request, no need to start
* the scan state machine in stack. The scan must honour the channel
* configuration done by the regulatory agent in the wiphy's registered
* bands.
*
* @get_stats: return low-level statistics
*
* @get_tkip_seq: If your device implements TKIP encryption in hardware this
* callback should be provided to read the TKIP transmit IVs (both IV32
* and IV16) for the given key from hardware.
*
* @set_rts_threshold: Configuration of RTS threshold (if device needs it)
*
* @set_frag_threshold: Configuration of fragmentation threshold. Assign this if
* the device does fragmentation by itself; if this method is assigned then
* the stack will not do fragmentation.
*
* @set_retry_limit: Configuration of retry limits (if device needs it)
*
* @sta_notify: Notifies low level driver about addition or removal
* of assocaited station or AP.
*
* @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
* bursting) for a hardware TX queue. The @queue parameter uses the
* %IEEE80211_TX_QUEUE_* constants. Must be atomic.
*
* @get_tx_stats: Get statistics of the current TX queue status. This is used
* to get number of currently queued packets (queue length), maximum queue
* size (limit), and total number of packets sent using each TX queue
* (count). This information is used for WMM to find out which TX
* queues have room for more packets and by hostapd to provide
* statistics about the current queueing state to external programs.
*
* @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
* this is only used for IBSS mode debugging and, as such, is not a
* required function. Must be atomic.
*
* @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
* with other STAs in the IBSS. This is only used in IBSS mode. This
* function is optional if the firmware/hardware takes full care of
* TSF synchronization.
*
* @beacon_update: Setup beacon data for IBSS beacons. Unlike access point,
* IBSS uses a fixed beacon frame which is configured using this
* function.
* If the driver returns success (0) from this callback, it owns
* the skb. That means the driver is responsible to kfree_skb() it.
* The control structure is not dynamically allocated. That means the
* driver does not own the pointer and if it needs it somewhere
* outside of the context of this function, it must copy it
* somewhere else.
* This handler is required only for IBSS mode.
*
* @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
* This is needed only for IBSS mode and the result of this function is
* used to determine whether to reply to Probe Requests.
*
* @conf_ht: Configures low level driver with 802.11n HT data. Must be atomic.
*
* @ampdu_action: Perform a certain A-MPDU action
* The RA/TID combination determines the destination and TID we want
* the ampdu action to be performed for. The action is defined through
* ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
* is the first frame we expect to perform the action on. notice
* that TX/RX_STOP can pass NULL for this parameter.
*/
struct ieee80211_ops {
int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb,
struct ieee80211_tx_control *control);
[PATCH] mac80211: revamp interface and filter configuration Drivers are currently supposed to keep track of monitor interfaces if they allow so-called "hard" monitor, and they are also supposed to keep track of multicast etc. This patch changes that, replaces the set_multicast_list() callback with a new configure_filter() callback that takes filter flags (FIF_*) instead of interface flags (IFF_*). For a driver, this means it should open the filter as much as necessary to get all frames requested by the filter flags. Accordingly, the filter flags are named "positively", e.g. FIF_ALLMULTI. Multicast filtering is a bit special in that drivers that have no multicast address filters need to allow multicast frames through when either the FIF_ALLMULTI flag is set or when the mc_count value is positive. At the same time, drivers are no longer notified about monitor interfaces at all, this means they now need to implement the start() and stop() callbacks and the new change_filter_flags() callback. Also, the start()/stop() ordering changed, start() is now called *before* any add_interface() as it really should be, and stop() after any remove_interface(). The patch also changes the behaviour of setting the bssid to multicast for scanning when IEEE80211_HW_NO_PROBE_FILTERING is set; the IEEE80211_HW_NO_PROBE_FILTERING flag is removed and the filter flag FIF_BCN_PRBRESP_PROMISC introduced. This is a lot more efficient for hardware like b43 that supports it and other hardware can still set the BSSID to all-ones. Driver modifications by Johannes Berg (b43 & iwlwifi), Michael Wu (rtl8187, adm8211, and p54), Larry Finger (b43legacy), and Ivo van Doorn (rt2x00). Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: Michael Wu <flamingice@sourmilk.net> Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2007-09-17 05:29:23 +00:00
int (*start)(struct ieee80211_hw *hw);
void (*stop)(struct ieee80211_hw *hw);
int (*add_interface)(struct ieee80211_hw *hw,
struct ieee80211_if_init_conf *conf);
void (*remove_interface)(struct ieee80211_hw *hw,
struct ieee80211_if_init_conf *conf);
int (*config)(struct ieee80211_hw *hw, struct ieee80211_conf *conf);
int (*config_interface)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_if_conf *conf);
void (*bss_info_changed)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u32 changed);
[PATCH] mac80211: revamp interface and filter configuration Drivers are currently supposed to keep track of monitor interfaces if they allow so-called "hard" monitor, and they are also supposed to keep track of multicast etc. This patch changes that, replaces the set_multicast_list() callback with a new configure_filter() callback that takes filter flags (FIF_*) instead of interface flags (IFF_*). For a driver, this means it should open the filter as much as necessary to get all frames requested by the filter flags. Accordingly, the filter flags are named "positively", e.g. FIF_ALLMULTI. Multicast filtering is a bit special in that drivers that have no multicast address filters need to allow multicast frames through when either the FIF_ALLMULTI flag is set or when the mc_count value is positive. At the same time, drivers are no longer notified about monitor interfaces at all, this means they now need to implement the start() and stop() callbacks and the new change_filter_flags() callback. Also, the start()/stop() ordering changed, start() is now called *before* any add_interface() as it really should be, and stop() after any remove_interface(). The patch also changes the behaviour of setting the bssid to multicast for scanning when IEEE80211_HW_NO_PROBE_FILTERING is set; the IEEE80211_HW_NO_PROBE_FILTERING flag is removed and the filter flag FIF_BCN_PRBRESP_PROMISC introduced. This is a lot more efficient for hardware like b43 that supports it and other hardware can still set the BSSID to all-ones. Driver modifications by Johannes Berg (b43 & iwlwifi), Michael Wu (rtl8187, adm8211, and p54), Larry Finger (b43legacy), and Ivo van Doorn (rt2x00). Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: Michael Wu <flamingice@sourmilk.net> Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2007-09-17 05:29:23 +00:00
void (*configure_filter)(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,
int mc_count, struct dev_addr_list *mc_list);
int (*set_tim)(struct ieee80211_hw *hw, int aid, int set);
int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
[MAC80211]: rework key handling This moves all the key handling code out from ieee80211_ioctl.c into key.c and also does the following changes including documentation updates in mac80211.h: 1) Turn off hardware acceleration for keys when the interface is down. This is necessary because otherwise monitor interfaces could be decrypting frames for other interfaces that are down at the moment. Also, it should go some way towards better suspend/resume support, in any case the routines used here could be used for that as well. Additionally, this makes the driver interface nicer, keys for a specific local MAC address are only ever present while an interface with that MAC address is enabled. 2) Change driver set_key() callback interface to allow only return values of -ENOSPC, -EOPNOTSUPP and 0, warn on all other return values. This allows debugging the stack when a driver notices it's handed a key while it is down. 3) Invert the flag meaning to KEY_FLAG_UPLOADED_TO_HARDWARE. 4) Remove REMOVE_ALL_KEYS command as it isn't used nor do we want to use it, we'll use DISABLE_KEY for each key. It is hard to use REMOVE_ALL_KEYS because we can handle multiple virtual interfaces with different key configuration, so we'd have to keep track of a lot of state for this and that isn't worth it. 5) Warn when disabling a key fails, it musn't. 6) Remove IEEE80211_HW_NO_TKIP_WMM_HWACCEL in favour of per-key IEEE80211_KEY_FLAG_WMM_STA to let driver sort it out itself. 7) Tell driver that a (non-WEP) key is used only for transmission by using an all-zeroes station MAC address when configuring. 8) Change the set_key() callback to have access to the local MAC address the key is being added for. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Acked-by: Michael Wu <flamingice@sourmilk.net> Signed-off-by: John W. Linville <linville@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-08-28 21:01:55 +00:00
const u8 *local_address, const u8 *address,
struct ieee80211_key_conf *key);
void (*update_tkip_key)(struct ieee80211_hw *hw,
struct ieee80211_key_conf *conf, const u8 *address,
u32 iv32, u16 *phase1key);
int (*hw_scan)(struct ieee80211_hw *hw, u8 *ssid, size_t len);
int (*get_stats)(struct ieee80211_hw *hw,
struct ieee80211_low_level_stats *stats);
void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
u32 *iv32, u16 *iv16);
int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
int (*set_frag_threshold)(struct ieee80211_hw *hw, u32 value);
int (*set_retry_limit)(struct ieee80211_hw *hw,
u32 short_retry, u32 long_retr);
void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
enum sta_notify_cmd, const u8 *addr);
int (*conf_tx)(struct ieee80211_hw *hw, int queue,
const struct ieee80211_tx_queue_params *params);
int (*get_tx_stats)(struct ieee80211_hw *hw,
struct ieee80211_tx_queue_stats *stats);
u64 (*get_tsf)(struct ieee80211_hw *hw);
void (*reset_tsf)(struct ieee80211_hw *hw);
int (*beacon_update)(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct ieee80211_tx_control *control);
int (*tx_last_beacon)(struct ieee80211_hw *hw);
int (*ampdu_action)(struct ieee80211_hw *hw,
enum ieee80211_ampdu_mlme_action action,
const u8 *addr, u16 tid, u16 *ssn);
};
/**
* ieee80211_alloc_hw - Allocate a new hardware device
*
* This must be called once for each hardware device. The returned pointer
* must be used to refer to this device when calling other functions.
* mac80211 allocates a private data area for the driver pointed to by
* @priv in &struct ieee80211_hw, the size of this area is given as
* @priv_data_len.
*
* @priv_data_len: length of private data
* @ops: callbacks for this device
*/
struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
const struct ieee80211_ops *ops);
/**
* ieee80211_register_hw - Register hardware device
*
* You must call this function before any other functions in
* mac80211. Note that before a hardware can be registered, you
* need to fill the contained wiphy's information.
*
* @hw: the device to register as returned by ieee80211_alloc_hw()
*/
int ieee80211_register_hw(struct ieee80211_hw *hw);
#ifdef CONFIG_MAC80211_LEDS
extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
#endif
/**
* ieee80211_get_tx_led_name - get name of TX LED
*
* mac80211 creates a transmit LED trigger for each wireless hardware
* that can be used to drive LEDs if your driver registers a LED device.
* This function returns the name (or %NULL if not configured for LEDs)
* of the trigger so you can automatically link the LED device.
*
* @hw: the hardware to get the LED trigger name for
*/
static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
{
#ifdef CONFIG_MAC80211_LEDS
return __ieee80211_get_tx_led_name(hw);
#else
return NULL;
#endif
}
/**
* ieee80211_get_rx_led_name - get name of RX LED
*
* mac80211 creates a receive LED trigger for each wireless hardware
* that can be used to drive LEDs if your driver registers a LED device.
* This function returns the name (or %NULL if not configured for LEDs)
* of the trigger so you can automatically link the LED device.
*
* @hw: the hardware to get the LED trigger name for
*/
static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
{
#ifdef CONFIG_MAC80211_LEDS
return __ieee80211_get_rx_led_name(hw);
#else
return NULL;
#endif
}
/**
* ieee80211_get_assoc_led_name - get name of association LED
*
* mac80211 creates a association LED trigger for each wireless hardware
* that can be used to drive LEDs if your driver registers a LED device.
* This function returns the name (or %NULL if not configured for LEDs)
* of the trigger so you can automatically link the LED device.
*
* @hw: the hardware to get the LED trigger name for
*/
static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
{
#ifdef CONFIG_MAC80211_LEDS
return __ieee80211_get_assoc_led_name(hw);
#else
return NULL;
#endif
}
/**
* ieee80211_get_radio_led_name - get name of radio LED
*
* mac80211 creates a radio change LED trigger for each wireless hardware
* that can be used to drive LEDs if your driver registers a LED device.
* This function returns the name (or %NULL if not configured for LEDs)
* of the trigger so you can automatically link the LED device.
*
* @hw: the hardware to get the LED trigger name for
*/
static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
{
#ifdef CONFIG_MAC80211_LEDS
return __ieee80211_get_radio_led_name(hw);
#else
return NULL;
#endif
}
/**
* ieee80211_unregister_hw - Unregister a hardware device
*
* This function instructs mac80211 to free allocated resources
* and unregister netdevices from the networking subsystem.
*
* @hw: the hardware to unregister
*/
void ieee80211_unregister_hw(struct ieee80211_hw *hw);
/**
* ieee80211_free_hw - free hardware descriptor
*
* This function frees everything that was allocated, including the
* private data for the driver. You must call ieee80211_unregister_hw()
* before calling this function
*
* @hw: the hardware to free
*/
void ieee80211_free_hw(struct ieee80211_hw *hw);
/* trick to avoid symbol clashes with the ieee80211 subsystem */
void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
struct ieee80211_rx_status *status);
/**
* ieee80211_rx - receive frame
*
* Use this function to hand received frames to mac80211. The receive
* buffer in @skb must start with an IEEE 802.11 header or a radiotap
* header if %RX_FLAG_RADIOTAP is set in the @status flags.
*
* This function may not be called in IRQ context. Calls to this function
* for a single hardware must be synchronized against each other. Calls
* to this function and ieee80211_rx_irqsafe() may not be mixed for a
* single hardware.
*
* @hw: the hardware this frame came in on
* @skb: the buffer to receive, owned by mac80211 after this call
* @status: status of this frame; the status pointer need not be valid
* after this function returns
*/
static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
struct ieee80211_rx_status *status)
{
__ieee80211_rx(hw, skb, status);
}
/**
* ieee80211_rx_irqsafe - receive frame
*
* Like ieee80211_rx() but can be called in IRQ context
* (internally defers to a tasklet.)
*
* Calls to this function and ieee80211_rx() may not be mixed for a
* single hardware.
*
* @hw: the hardware this frame came in on
* @skb: the buffer to receive, owned by mac80211 after this call
* @status: status of this frame; the status pointer need not be valid
* after this function returns and is not freed by mac80211,
* it is recommended that it points to a stack area
*/
void ieee80211_rx_irqsafe(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct ieee80211_rx_status *status);
/**
* ieee80211_tx_status - transmit status callback
*
* Call this function for all transmitted frames after they have been
* transmitted. It is permissible to not call this function for
* multicast frames but this can affect statistics.
*
* This function may not be called in IRQ context. Calls to this function
* for a single hardware must be synchronized against each other. Calls
* to this function and ieee80211_tx_status_irqsafe() may not be mixed
* for a single hardware.
*
* @hw: the hardware the frame was transmitted by
* @skb: the frame that was transmitted, owned by mac80211 after this call
* @status: status information for this frame; the status pointer need not
* be valid after this function returns and is not freed by mac80211,
* it is recommended that it points to a stack area
*/
void ieee80211_tx_status(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct ieee80211_tx_status *status);
/**
* ieee80211_tx_status_irqsafe - irq-safe transmit status callback
*
* Like ieee80211_tx_status() but can be called in IRQ context
* (internally defers to a tasklet.)
*
* Calls to this function and ieee80211_tx_status() may not be mixed for a
* single hardware.
*
* @hw: the hardware the frame was transmitted by
* @skb: the frame that was transmitted, owned by mac80211 after this call
* @status: status information for this frame; the status pointer need not
* be valid after this function returns and is not freed by mac80211,
* it is recommended that it points to a stack area
*/
void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct ieee80211_tx_status *status);
/**
* ieee80211_beacon_get - beacon generation function
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
* @control: will be filled with information needed to send this beacon.
*
* If the beacon frames are generated by the host system (i.e., not in
* hardware/firmware), the low-level driver uses this function to receive
* the next beacon frame from the 802.11 code. The low-level is responsible
* for calling this function before beacon data is needed (e.g., based on
* hardware interrupt). Returned skb is used only once and low-level driver
* is responsible of freeing it.
*/
struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_tx_control *control);
/**
* ieee80211_rts_get - RTS frame generation function
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
* @frame: pointer to the frame that is going to be protected by the RTS.
* @frame_len: the frame length (in octets).
* @frame_txctl: &struct ieee80211_tx_control of the frame.
* @rts: The buffer where to store the RTS frame.
*
* If the RTS frames are generated by the host system (i.e., not in
* hardware/firmware), the low-level driver uses this function to receive
* the next RTS frame from the 802.11 code. The low-level is responsible
* for calling this function before and RTS frame is needed.
*/
void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
const void *frame, size_t frame_len,
const struct ieee80211_tx_control *frame_txctl,
struct ieee80211_rts *rts);
/**
* ieee80211_rts_duration - Get the duration field for an RTS frame
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
* @frame_len: the length of the frame that is going to be protected by the RTS.
* @frame_txctl: &struct ieee80211_tx_control of the frame.
*
* If the RTS is generated in firmware, but the host system must provide
* the duration field, the low-level driver uses this function to receive
* the duration field value in little-endian byteorder.
*/
__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, size_t frame_len,
const struct ieee80211_tx_control *frame_txctl);
/**
* ieee80211_ctstoself_get - CTS-to-self frame generation function
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
* @frame: pointer to the frame that is going to be protected by the CTS-to-self.
* @frame_len: the frame length (in octets).
* @frame_txctl: &struct ieee80211_tx_control of the frame.
* @cts: The buffer where to store the CTS-to-self frame.
*
* If the CTS-to-self frames are generated by the host system (i.e., not in
* hardware/firmware), the low-level driver uses this function to receive
* the next CTS-to-self frame from the 802.11 code. The low-level is responsible
* for calling this function before and CTS-to-self frame is needed.
*/
void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
const void *frame, size_t frame_len,
const struct ieee80211_tx_control *frame_txctl,
struct ieee80211_cts *cts);
/**
* ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
* @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
* @frame_txctl: &struct ieee80211_tx_control of the frame.
*
* If the CTS-to-self is generated in firmware, but the host system must provide
* the duration field, the low-level driver uses this function to receive
* the duration field value in little-endian byteorder.
*/
__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
size_t frame_len,
const struct ieee80211_tx_control *frame_txctl);
/**
* ieee80211_generic_frame_duration - Calculate the duration field for a frame
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
* @frame_len: the length of the frame.
* @rate: the rate at which the frame is going to be transmitted.
*
* Calculate the duration field of some generic frame, given its
* length and transmission rate (in 100kbps).
*/
__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
size_t frame_len,
struct ieee80211_rate *rate);
/**
* ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
* @control: will be filled with information needed to send returned frame.
*
* Function for accessing buffered broadcast and multicast frames. If
* hardware/firmware does not implement buffering of broadcast/multicast
* frames when power saving is used, 802.11 code buffers them in the host
* memory. The low-level driver uses this function to fetch next buffered
* frame. In most cases, this is used when generating beacon frame. This
* function returns a pointer to the next buffered skb or NULL if no more
* buffered frames are available.
*
* Note: buffered frames are returned only after DTIM beacon frame was
* generated with ieee80211_beacon_get() and the low-level driver must thus
* call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
* NULL if the previous generated beacon was not DTIM, so the low-level driver
* does not need to check for DTIM beacons separately and should be able to
* use common code for all beacons.
*/
struct sk_buff *
ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_tx_control *control);
/**
* ieee80211_get_hdrlen_from_skb - get header length from data
*
* Given an skb with a raw 802.11 header at the data pointer this function
* returns the 802.11 header length in bytes (not including encryption
* headers). If the data in the sk_buff is too short to contain a valid 802.11
* header the function returns 0.
*
* @skb: the frame
*/
int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
/**
* ieee80211_get_hdrlen - get header length from frame control
*
* This function returns the 802.11 header length in bytes (not including
* encryption headers.)
*
* @fc: the frame control field (in CPU endianness)
*/
int ieee80211_get_hdrlen(u16 fc);
/**
* ieee80211_get_tkip_key - get a TKIP rc4 for skb
*
* This function computes a TKIP rc4 key for an skb. It computes
* a phase 1 key if needed (iv16 wraps around). This function is to
* be used by drivers which can do HW encryption but need to compute
* to phase 1/2 key in SW.
*
* @keyconf: the parameter passed with the set key
* @skb: the skb for which the key is needed
* @rc4key: a buffer to which the key will be written
*/
void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
struct sk_buff *skb,
enum ieee80211_tkip_key_type type, u8 *key);
/**
* ieee80211_wake_queue - wake specific queue
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @queue: queue number (counted from zero).
*
* Drivers should use this function instead of netif_wake_queue.
*/
void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
/**
* ieee80211_stop_queue - stop specific queue
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @queue: queue number (counted from zero).
*
* Drivers should use this function instead of netif_stop_queue.
*/
void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
/**
* ieee80211_start_queues - start all queues
* @hw: pointer to as obtained from ieee80211_alloc_hw().
*
* Drivers should use this function instead of netif_start_queue.
*/
void ieee80211_start_queues(struct ieee80211_hw *hw);
/**
* ieee80211_stop_queues - stop all queues
* @hw: pointer as obtained from ieee80211_alloc_hw().
*
* Drivers should use this function instead of netif_stop_queue.
*/
void ieee80211_stop_queues(struct ieee80211_hw *hw);
/**
* ieee80211_wake_queues - wake all queues
* @hw: pointer as obtained from ieee80211_alloc_hw().
*
* Drivers should use this function instead of netif_wake_queue.
*/
void ieee80211_wake_queues(struct ieee80211_hw *hw);
/**
* ieee80211_scan_completed - completed hardware scan
*
* When hardware scan offload is used (i.e. the hw_scan() callback is
* assigned) this function needs to be called by the driver to notify
* mac80211 that the scan finished.
*
* @hw: the hardware that finished the scan
*/
void ieee80211_scan_completed(struct ieee80211_hw *hw);
/**
* ieee80211_iterate_active_interfaces - iterate active interfaces
*
* This function iterates over the interfaces associated with a given
* hardware that are currently active and calls the callback for them.
*
* @hw: the hardware struct of which the interfaces should be iterated over
* @iterator: the iterator function to call, cannot sleep
* @data: first argument of the iterator function
*/
void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
void (*iterator)(void *data, u8 *mac,
struct ieee80211_vif *vif),
void *data);
/**
* ieee80211_start_tx_ba_session - Start a tx Block Ack session.
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @ra: receiver address of the BA session recipient
* @tid: the TID to BA on.
* @return: success if addBA request was sent, failure otherwise
*
* Although mac80211/low level driver/user space application can estimate
* the need to start aggregation on a certain RA/TID, the session level
* will be managed by the mac80211.
*/
int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
/**
* ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @ra: receiver address of the BA session recipient.
* @tid: the TID to BA on.
*
* This function must be called by low level driver once it has
* finished with preparations for the BA session.
*/
void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
/**
* ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @ra: receiver address of the BA session recipient.
* @tid: the TID to BA on.
*
* This function must be called by low level driver once it has
* finished with preparations for the BA session.
* This version of the function is irq safe.
*/
void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
u16 tid);
/**
* ieee80211_stop_tx_ba_session - Stop a Block Ack session.
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @ra: receiver address of the BA session recipient
* @tid: the TID to stop BA.
* @initiator: if indicates initiator DELBA frame will be sent.
* @return: error if no sta with matching da found, success otherwise
*
* Although mac80211/low level driver/user space application can estimate
* the need to stop aggregation on a certain RA/TID, the session level
* will be managed by the mac80211.
*/
int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
u8 *ra, u16 tid,
enum ieee80211_back_parties initiator);
/**
* ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @ra: receiver address of the BA session recipient.
* @tid: the desired TID to BA on.
*
* This function must be called by low level driver once it has
* finished with preparations for the BA session tear down.
*/
void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
/**
* ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @ra: receiver address of the BA session recipient.
* @tid: the desired TID to BA on.
*
* This function must be called by low level driver once it has
* finished with preparations for the BA session tear down.
* This version of the function is irq safe.
*/
void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
u16 tid);
/**
* ieee80211_notify_mac - low level driver notification
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @notification_types: enum ieee80211_notification_types
*
* This function must be called by low level driver to inform mac80211 of
* low level driver status change or force mac80211 to re-assoc for low
* level driver internal error that require re-assoc.
*/
void ieee80211_notify_mac(struct ieee80211_hw *hw,
enum ieee80211_notification_types notif_type);
#endif /* MAC80211_H */