aha/drivers/net/tc35815.c

2222 lines
64 KiB
C
Raw Normal View History

/*
* tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
*
* Based on skelton.c by Donald Becker.
*
* This driver is a replacement of older and less maintained version.
* This is a header of the older version:
* -----<snip>-----
* Copyright 2001 MontaVista Software Inc.
* Author: MontaVista Software, Inc.
* ahennessy@mvista.com
* Copyright (C) 2000-2001 Toshiba Corporation
* static const char *version =
* "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
* -----<snip>-----
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* (C) Copyright TOSHIBA CORPORATION 2004-2005
* All Rights Reserved.
*/
#define DRV_VERSION "1.39"
static const char *version = "tc35815.c:v" DRV_VERSION "\n";
#define MODNAME "tc35815"
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/if_vlan.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/phy.h>
#include <linux/workqueue.h>
#include <linux/platform_device.h>
#include <asm/io.h>
#include <asm/byteorder.h>
enum tc35815_chiptype {
TC35815CF = 0,
TC35815_NWU,
TC35815_TX4939,
};
/* indexed by tc35815_chiptype, above */
static const struct {
const char *name;
} chip_info[] __devinitdata = {
{ "TOSHIBA TC35815CF 10/100BaseTX" },
{ "TOSHIBA TC35815 with Wake on LAN" },
{ "TOSHIBA TC35815/TX4939" },
};
static const struct pci_device_id tc35815_pci_tbl[] = {
{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
{0,}
};
MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
/* see MODULE_PARM_DESC */
static struct tc35815_options {
int speed;
int duplex;
} options;
/*
* Registers
*/
struct tc35815_regs {
__u32 DMA_Ctl; /* 0x00 */
__u32 TxFrmPtr;
__u32 TxThrsh;
__u32 TxPollCtr;
__u32 BLFrmPtr;
__u32 RxFragSize;
__u32 Int_En;
__u32 FDA_Bas;
__u32 FDA_Lim; /* 0x20 */
__u32 Int_Src;
__u32 unused0[2];
__u32 PauseCnt;
__u32 RemPauCnt;
__u32 TxCtlFrmStat;
__u32 unused1;
__u32 MAC_Ctl; /* 0x40 */
__u32 CAM_Ctl;
__u32 Tx_Ctl;
__u32 Tx_Stat;
__u32 Rx_Ctl;
__u32 Rx_Stat;
__u32 MD_Data;
__u32 MD_CA;
__u32 CAM_Adr; /* 0x60 */
__u32 CAM_Data;
__u32 CAM_Ena;
__u32 PROM_Ctl;
__u32 PROM_Data;
__u32 Algn_Cnt;
__u32 CRC_Cnt;
__u32 Miss_Cnt;
};
/*
* Bit assignments
*/
/* DMA_Ctl bit asign ------------------------------------------------------- */
#define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */
#define DMA_RxAlign_1 0x00400000
#define DMA_RxAlign_2 0x00800000
#define DMA_RxAlign_3 0x00c00000
#define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */
#define DMA_IntMask 0x00040000 /* 1:Interupt mask */
#define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */
#define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */
#define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */
#define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */
#define DMA_TestMode 0x00002000 /* 1:Test Mode */
#define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */
#define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */
/* RxFragSize bit asign ---------------------------------------------------- */
#define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */
#define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */
/* MAC_Ctl bit asign ------------------------------------------------------- */
#define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */
#define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */
#define MAC_MissRoll 0x00000400 /* 1:Missed Roll */
#define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */
#define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */
#define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/
#define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */
#define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */
#define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */
#define MAC_Reset 0x00000004 /* 1:Software Reset */
#define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */
#define MAC_HaltReq 0x00000001 /* 1:Halt request */
/* PROM_Ctl bit asign ------------------------------------------------------ */
#define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */
#define PROM_Read 0x00004000 /*10:Read operation */
#define PROM_Write 0x00002000 /*01:Write operation */
#define PROM_Erase 0x00006000 /*11:Erase operation */
/*00:Enable or Disable Writting, */
/* as specified in PROM_Addr. */
#define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */
/*00xxxx: disable */
/* CAM_Ctl bit asign ------------------------------------------------------- */
#define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */
#define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/
/* accept other */
#define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */
#define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */
#define CAM_StationAcc 0x00000001 /* 1:unicast accept */
/* CAM_Ena bit asign ------------------------------------------------------- */
#define CAM_ENTRY_MAX 21 /* CAM Data entry max count */
#define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */
#define CAM_Ena_Bit(index) (1 << (index))
#define CAM_ENTRY_DESTINATION 0
#define CAM_ENTRY_SOURCE 1
#define CAM_ENTRY_MACCTL 20
/* Tx_Ctl bit asign -------------------------------------------------------- */
#define Tx_En 0x00000001 /* 1:Transmit enable */
#define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */
#define Tx_NoPad 0x00000004 /* 1:Suppress Padding */
#define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */
#define Tx_FBack 0x00000010 /* 1:Fast Back-off */
#define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */
#define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */
#define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */
#define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */
#define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */
#define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */
#define Tx_EnComp 0x00004000 /* 1:Enable Completion */
/* Tx_Stat bit asign ------------------------------------------------------- */
#define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */
#define Tx_ExColl 0x00000010 /* Excessive Collision */
#define Tx_TXDefer 0x00000020 /* Transmit Defered */
#define Tx_Paused 0x00000040 /* Transmit Paused */
#define Tx_IntTx 0x00000080 /* Interrupt on Tx */
#define Tx_Under 0x00000100 /* Underrun */
#define Tx_Defer 0x00000200 /* Deferral */
#define Tx_NCarr 0x00000400 /* No Carrier */
#define Tx_10Stat 0x00000800 /* 10Mbps Status */
#define Tx_LateColl 0x00001000 /* Late Collision */
#define Tx_TxPar 0x00002000 /* Tx Parity Error */
#define Tx_Comp 0x00004000 /* Completion */
#define Tx_Halted 0x00008000 /* Tx Halted */
#define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */
/* Rx_Ctl bit asign -------------------------------------------------------- */
#define Rx_EnGood 0x00004000 /* 1:Enable Good */
#define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */
#define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */
#define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */
#define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */
#define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */
#define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */
#define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */
#define Rx_ShortEn 0x00000008 /* 1:Short Enable */
#define Rx_LongEn 0x00000004 /* 1:Long Enable */
#define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */
#define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */
/* Rx_Stat bit asign ------------------------------------------------------- */
#define Rx_Halted 0x00008000 /* Rx Halted */
#define Rx_Good 0x00004000 /* Rx Good */
#define Rx_RxPar 0x00002000 /* Rx Parity Error */
#define Rx_TypePkt 0x00001000 /* Rx Type Packet */
#define Rx_LongErr 0x00000800 /* Rx Long Error */
#define Rx_Over 0x00000400 /* Rx Overflow */
#define Rx_CRCErr 0x00000200 /* Rx CRC Error */
#define Rx_Align 0x00000100 /* Rx Alignment Error */
#define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */
#define Rx_IntRx 0x00000040 /* Rx Interrupt */
#define Rx_CtlRecd 0x00000020 /* Rx Control Receive */
#define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */
#define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */
/* Int_En bit asign -------------------------------------------------------- */
#define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */
#define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */
#define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */
#define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */
#define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */
#define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */
#define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */
#define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */
#define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */
#define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */
#define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */
#define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */
/* Exhausted Enable */
/* Int_Src bit asign ------------------------------------------------------- */
#define Int_NRabt 0x00004000 /* 1:Non Recoverable error */
#define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */
#define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */
#define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */
#define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */
#define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */
#define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */
#define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */
#define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */
#define Int_SWInt 0x00000020 /* 1:Software request & Clear */
#define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */
#define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */
#define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */
#define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */
#define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */
/* MD_CA bit asign --------------------------------------------------------- */
#define MD_CA_PreSup 0x00001000 /* 1:Preamble Supress */
#define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */
#define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */
/*
* Descriptors
*/
/* Frame descripter */
struct FDesc {
volatile __u32 FDNext;
volatile __u32 FDSystem;
volatile __u32 FDStat;
volatile __u32 FDCtl;
};
/* Buffer descripter */
struct BDesc {
volatile __u32 BuffData;
volatile __u32 BDCtl;
};
#define FD_ALIGN 16
/* Frame Descripter bit asign ---------------------------------------------- */
#define FD_FDLength_MASK 0x0000FFFF /* Length MASK */
#define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */
#define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */
#define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */
#define FD_FrmOpt_IntTx 0x20000000 /* Tx only */
#define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */
#define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */
#define FD_FrmOpt_Packing 0x04000000 /* Rx only */
#define FD_CownsFD 0x80000000 /* FD Controller owner bit */
#define FD_Next_EOL 0x00000001 /* FD EOL indicator */
#define FD_BDCnt_SHIFT 16
/* Buffer Descripter bit asign --------------------------------------------- */
#define BD_BuffLength_MASK 0x0000FFFF /* Recieve Data Size */
#define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */
#define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */
#define BD_CownsBD 0x80000000 /* BD Controller owner bit */
#define BD_RxBDID_SHIFT 16
#define BD_RxBDSeqN_SHIFT 24
/* Some useful constants. */
#define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \
Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
Tx_En) /* maybe 0x7b01 */
/* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
#define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
| Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
#define INT_EN_CMD (Int_NRAbtEn | \
Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \
Int_STargAbtEn | \
Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/
#define DMA_CTL_CMD DMA_BURST_SIZE
#define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF)
/* Tuning parameters */
#define DMA_BURST_SIZE 32
#define TX_THRESHOLD 1024
/* used threshold with packet max byte for low pci transfer ability.*/
#define TX_THRESHOLD_MAX 1536
/* setting threshold max value when overrun error occured this count. */
#define TX_THRESHOLD_KEEP_LIMIT 10
/* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
#define FD_PAGE_NUM 4
#define RX_BUF_NUM 128 /* < 256 */
#define RX_FD_NUM 256 /* >= 32 */
#define TX_FD_NUM 128
#if RX_CTL_CMD & Rx_LongEn
#define RX_BUF_SIZE PAGE_SIZE
#elif RX_CTL_CMD & Rx_StripCRC
#define RX_BUF_SIZE \
L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
#else
#define RX_BUF_SIZE \
L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
#endif
#define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */
#define NAPI_WEIGHT 16
struct TxFD {
struct FDesc fd;
struct BDesc bd;
struct BDesc unused;
};
struct RxFD {
struct FDesc fd;
struct BDesc bd[0]; /* variable length */
};
struct FrFD {
struct FDesc fd;
struct BDesc bd[RX_BUF_NUM];
};
#define tc_readl(addr) ioread32(addr)
#define tc_writel(d, addr) iowrite32(d, addr)
#define TC35815_TX_TIMEOUT msecs_to_jiffies(400)
/* Information that need to be kept for each controller. */
struct tc35815_local {
struct pci_dev *pci_dev;
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
struct net_device *dev;
struct napi_struct napi;
/* statistics */
struct {
int max_tx_qlen;
int tx_ints;
int rx_ints;
int tx_underrun;
} lstats;
/* Tx control lock. This protects the transmit buffer ring
* state along with the "tx full" state of the driver. This
* means all netif_queue flow control actions are protected
* by this lock as well.
*/
spinlock_t lock;
struct mii_bus *mii_bus;
struct phy_device *phy_dev;
int duplex;
int speed;
int link;
struct work_struct restart_work;
/*
* Transmitting: Batch Mode.
* 1 BD in 1 TxFD.
* Receiving: Non-Packing Mode.
* 1 circular FD for Free Buffer List.
* RX_BUF_NUM BD in Free Buffer FD.
* One Free Buffer BD has ETH_FRAME_LEN data buffer.
*/
void *fd_buf; /* for TxFD, RxFD, FrFD */
dma_addr_t fd_buf_dma;
struct TxFD *tfd_base;
unsigned int tfd_start;
unsigned int tfd_end;
struct RxFD *rfd_base;
struct RxFD *rfd_limit;
struct RxFD *rfd_cur;
struct FrFD *fbl_ptr;
unsigned int fbl_count;
struct {
struct sk_buff *skb;
dma_addr_t skb_dma;
} tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
u32 msg_enable;
enum tc35815_chiptype chiptype;
};
static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
{
return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
}
#ifdef DEBUG
static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
{
return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
}
#endif
static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
struct pci_dev *hwdev,
dma_addr_t *dma_handle)
{
struct sk_buff *skb;
skb = dev_alloc_skb(RX_BUF_SIZE);
if (!skb)
return NULL;
*dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
PCI_DMA_FROMDEVICE);
dma-mapping: add the device argument to dma_mapping_error() Add per-device dma_mapping_ops support for CONFIG_X86_64 as POWER architecture does: This enables us to cleanly fix the Calgary IOMMU issue that some devices are not behind the IOMMU (http://lkml.org/lkml/2008/5/8/423). I think that per-device dma_mapping_ops support would be also helpful for KVM people to support PCI passthrough but Andi thinks that this makes it difficult to support the PCI passthrough (see the above thread). So I CC'ed this to KVM camp. Comments are appreciated. A pointer to dma_mapping_ops to struct dev_archdata is added. If the pointer is non NULL, DMA operations in asm/dma-mapping.h use it. If it's NULL, the system-wide dma_ops pointer is used as before. If it's useful for KVM people, I plan to implement a mechanism to register a hook called when a new pci (or dma capable) device is created (it works with hot plugging). It enables IOMMUs to set up an appropriate dma_mapping_ops per device. The major obstacle is that dma_mapping_error doesn't take a pointer to the device unlike other DMA operations. So x86 can't have dma_mapping_ops per device. Note all the POWER IOMMUs use the same dma_mapping_error function so this is not a problem for POWER but x86 IOMMUs use different dma_mapping_error functions. The first patch adds the device argument to dma_mapping_error. The patch is trivial but large since it touches lots of drivers and dma-mapping.h in all the architecture. This patch: dma_mapping_error() doesn't take a pointer to the device unlike other DMA operations. So we can't have dma_mapping_ops per device. Note that POWER already has dma_mapping_ops per device but all the POWER IOMMUs use the same dma_mapping_error function. x86 IOMMUs use device argument. [akpm@linux-foundation.org: fix sge] [akpm@linux-foundation.org: fix svc_rdma] [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: fix bnx2x] [akpm@linux-foundation.org: fix s2io] [akpm@linux-foundation.org: fix pasemi_mac] [akpm@linux-foundation.org: fix sdhci] [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: fix sparc] [akpm@linux-foundation.org: fix ibmvscsi] Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: Muli Ben-Yehuda <muli@il.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: Avi Kivity <avi@qumranet.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 02:44:49 +00:00
if (pci_dma_mapping_error(hwdev, *dma_handle)) {
dev_kfree_skb_any(skb);
return NULL;
}
skb_reserve(skb, 2); /* make IP header 4byte aligned */
return skb;
}
static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
{
pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
PCI_DMA_FROMDEVICE);
dev_kfree_skb_any(skb);
}
/* Index to functions, as function prototypes. */
static int tc35815_open(struct net_device *dev);
static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
static irqreturn_t tc35815_interrupt(int irq, void *dev_id);
static int tc35815_rx(struct net_device *dev, int limit);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
static int tc35815_poll(struct napi_struct *napi, int budget);
static void tc35815_txdone(struct net_device *dev);
static int tc35815_close(struct net_device *dev);
static struct net_device_stats *tc35815_get_stats(struct net_device *dev);
static void tc35815_set_multicast_list(struct net_device *dev);
static void tc35815_tx_timeout(struct net_device *dev);
static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
#ifdef CONFIG_NET_POLL_CONTROLLER
static void tc35815_poll_controller(struct net_device *dev);
#endif
static const struct ethtool_ops tc35815_ethtool_ops;
/* Example routines you must write ;->. */
static void tc35815_chip_reset(struct net_device *dev);
static void tc35815_chip_init(struct net_device *dev);
#ifdef DEBUG
static void panic_queues(struct net_device *dev);
#endif
static void tc35815_restart_work(struct work_struct *work);
static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
{
struct net_device *dev = bus->priv;
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
unsigned long timeout = jiffies + HZ;
tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
udelay(12); /* it takes 32 x 400ns at least */
while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
if (time_after(jiffies, timeout))
return -EIO;
cpu_relax();
}
return tc_readl(&tr->MD_Data) & 0xffff;
}
static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
{
struct net_device *dev = bus->priv;
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
unsigned long timeout = jiffies + HZ;
tc_writel(val, &tr->MD_Data);
tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
&tr->MD_CA);
udelay(12); /* it takes 32 x 400ns at least */
while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
if (time_after(jiffies, timeout))
return -EIO;
cpu_relax();
}
return 0;
}
static void tc_handle_link_change(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
struct phy_device *phydev = lp->phy_dev;
unsigned long flags;
int status_change = 0;
spin_lock_irqsave(&lp->lock, flags);
if (phydev->link &&
(lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
u32 reg;
reg = tc_readl(&tr->MAC_Ctl);
reg |= MAC_HaltReq;
tc_writel(reg, &tr->MAC_Ctl);
if (phydev->duplex == DUPLEX_FULL)
reg |= MAC_FullDup;
else
reg &= ~MAC_FullDup;
tc_writel(reg, &tr->MAC_Ctl);
reg &= ~MAC_HaltReq;
tc_writel(reg, &tr->MAC_Ctl);
/*
* TX4939 PCFG.SPEEDn bit will be changed on
* NETDEV_CHANGE event.
*/
/*
* WORKAROUND: enable LostCrS only if half duplex
* operation.
* (TX4939 does not have EnLCarr)
*/
if (phydev->duplex == DUPLEX_HALF &&
lp->chiptype != TC35815_TX4939)
tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
&tr->Tx_Ctl);
lp->speed = phydev->speed;
lp->duplex = phydev->duplex;
status_change = 1;
}
if (phydev->link != lp->link) {
if (phydev->link) {
/* delayed promiscuous enabling */
if (dev->flags & IFF_PROMISC)
tc35815_set_multicast_list(dev);
} else {
lp->speed = 0;
lp->duplex = -1;
}
lp->link = phydev->link;
status_change = 1;
}
spin_unlock_irqrestore(&lp->lock, flags);
if (status_change && netif_msg_link(lp)) {
phy_print_status(phydev);
pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
dev->name,
phy_read(phydev, MII_BMCR),
phy_read(phydev, MII_BMSR),
phy_read(phydev, MII_LPA));
}
}
static int tc_mii_probe(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
struct phy_device *phydev = NULL;
int phy_addr;
u32 dropmask;
/* find the first phy */
for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
if (lp->mii_bus->phy_map[phy_addr]) {
if (phydev) {
printk(KERN_ERR "%s: multiple PHYs found\n",
dev->name);
return -EINVAL;
}
phydev = lp->mii_bus->phy_map[phy_addr];
break;
}
}
if (!phydev) {
printk(KERN_ERR "%s: no PHY found\n", dev->name);
return -ENODEV;
}
/* attach the mac to the phy */
phydev = phy_connect(dev, dev_name(&phydev->dev),
&tc_handle_link_change, 0,
lp->chiptype == TC35815_TX4939 ?
PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
if (IS_ERR(phydev)) {
printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
return PTR_ERR(phydev);
}
printk(KERN_INFO "%s: attached PHY driver [%s] "
"(mii_bus:phy_addr=%s, id=%x)\n",
dev->name, phydev->drv->name, dev_name(&phydev->dev),
phydev->phy_id);
/* mask with MAC supported features */
phydev->supported &= PHY_BASIC_FEATURES;
dropmask = 0;
if (options.speed == 10)
dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
else if (options.speed == 100)
dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
if (options.duplex == 1)
dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
else if (options.duplex == 2)
dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
phydev->supported &= ~dropmask;
phydev->advertising = phydev->supported;
lp->link = 0;
lp->speed = 0;
lp->duplex = -1;
lp->phy_dev = phydev;
return 0;
}
static int tc_mii_init(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
int err;
int i;
lp->mii_bus = mdiobus_alloc();
if (lp->mii_bus == NULL) {
err = -ENOMEM;
goto err_out;
}
lp->mii_bus->name = "tc35815_mii_bus";
lp->mii_bus->read = tc_mdio_read;
lp->mii_bus->write = tc_mdio_write;
snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
(lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
lp->mii_bus->priv = dev;
lp->mii_bus->parent = &lp->pci_dev->dev;
lp->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
if (!lp->mii_bus->irq) {
err = -ENOMEM;
goto err_out_free_mii_bus;
}
for (i = 0; i < PHY_MAX_ADDR; i++)
lp->mii_bus->irq[i] = PHY_POLL;
err = mdiobus_register(lp->mii_bus);
if (err)
goto err_out_free_mdio_irq;
err = tc_mii_probe(dev);
if (err)
goto err_out_unregister_bus;
return 0;
err_out_unregister_bus:
mdiobus_unregister(lp->mii_bus);
err_out_free_mdio_irq:
kfree(lp->mii_bus->irq);
err_out_free_mii_bus:
mdiobus_free(lp->mii_bus);
err_out:
return err;
}
#ifdef CONFIG_CPU_TX49XX
/*
* Find a platform_device providing a MAC address. The platform code
* should provide a "tc35815-mac" device with a MAC address in its
* platform_data.
*/
static int __devinit tc35815_mac_match(struct device *dev, void *data)
{
struct platform_device *plat_dev = to_platform_device(dev);
struct pci_dev *pci_dev = data;
unsigned int id = pci_dev->irq;
return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
}
static int __devinit tc35815_read_plat_dev_addr(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
struct device *pd = bus_find_device(&platform_bus_type, NULL,
lp->pci_dev, tc35815_mac_match);
if (pd) {
if (pd->platform_data)
memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
put_device(pd);
return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
}
return -ENODEV;
}
#else
static int __devinit tc35815_read_plat_dev_addr(struct net_device *dev)
{
return -ENODEV;
}
#endif
static int __devinit tc35815_init_dev_addr(struct net_device *dev)
{
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int i;
while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
;
for (i = 0; i < 6; i += 2) {
unsigned short data;
tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
;
data = tc_readl(&tr->PROM_Data);
dev->dev_addr[i] = data & 0xff;
dev->dev_addr[i+1] = data >> 8;
}
if (!is_valid_ether_addr(dev->dev_addr))
return tc35815_read_plat_dev_addr(dev);
return 0;
}
static const struct net_device_ops tc35815_netdev_ops = {
.ndo_open = tc35815_open,
.ndo_stop = tc35815_close,
.ndo_start_xmit = tc35815_send_packet,
.ndo_get_stats = tc35815_get_stats,
.ndo_set_multicast_list = tc35815_set_multicast_list,
.ndo_tx_timeout = tc35815_tx_timeout,
.ndo_do_ioctl = tc35815_ioctl,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = eth_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = tc35815_poll_controller,
#endif
};
static int __devinit tc35815_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
void __iomem *ioaddr = NULL;
struct net_device *dev;
struct tc35815_local *lp;
int rc;
static int printed_version;
if (!printed_version++) {
printk(version);
dev_printk(KERN_DEBUG, &pdev->dev,
"speed:%d duplex:%d\n",
options.speed, options.duplex);
}
if (!pdev->irq) {
dev_warn(&pdev->dev, "no IRQ assigned.\n");
return -ENODEV;
}
/* dev zeroed in alloc_etherdev */
dev = alloc_etherdev(sizeof(*lp));
if (dev == NULL) {
dev_err(&pdev->dev, "unable to alloc new ethernet\n");
return -ENOMEM;
}
SET_NETDEV_DEV(dev, &pdev->dev);
lp = netdev_priv(dev);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
lp->dev = dev;
/* enable device (incl. PCI PM wakeup), and bus-mastering */
rc = pcim_enable_device(pdev);
if (rc)
goto err_out;
rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
if (rc)
goto err_out;
pci_set_master(pdev);
ioaddr = pcim_iomap_table(pdev)[1];
/* Initialize the device structure. */
dev->netdev_ops = &tc35815_netdev_ops;
dev->ethtool_ops = &tc35815_ethtool_ops;
dev->watchdog_timeo = TC35815_TX_TIMEOUT;
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
dev->irq = pdev->irq;
dev->base_addr = (unsigned long)ioaddr;
INIT_WORK(&lp->restart_work, tc35815_restart_work);
spin_lock_init(&lp->lock);
lp->pci_dev = pdev;
lp->chiptype = ent->driver_data;
lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
pci_set_drvdata(pdev, dev);
/* Soft reset the chip. */
tc35815_chip_reset(dev);
/* Retrieve the ethernet address. */
if (tc35815_init_dev_addr(dev)) {
dev_warn(&pdev->dev, "not valid ether addr\n");
random_ether_addr(dev->dev_addr);
}
rc = register_netdev(dev);
if (rc)
goto err_out;
memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
dev->name,
chip_info[ent->driver_data].name,
dev->base_addr,
dev->dev_addr,
dev->irq);
rc = tc_mii_init(dev);
if (rc)
goto err_out_unregister;
return 0;
err_out_unregister:
unregister_netdev(dev);
err_out:
free_netdev(dev);
return rc;
}
static void __devexit tc35815_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct tc35815_local *lp = netdev_priv(dev);
phy_disconnect(lp->phy_dev);
mdiobus_unregister(lp->mii_bus);
kfree(lp->mii_bus->irq);
mdiobus_free(lp->mii_bus);
unregister_netdev(dev);
free_netdev(dev);
pci_set_drvdata(pdev, NULL);
}
static int
tc35815_init_queues(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
int i;
unsigned long fd_addr;
if (!lp->fd_buf) {
BUG_ON(sizeof(struct FDesc) +
sizeof(struct BDesc) * RX_BUF_NUM +
sizeof(struct FDesc) * RX_FD_NUM +
sizeof(struct TxFD) * TX_FD_NUM >
PAGE_SIZE * FD_PAGE_NUM);
lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
PAGE_SIZE * FD_PAGE_NUM,
&lp->fd_buf_dma);
if (!lp->fd_buf)
return -ENOMEM;
for (i = 0; i < RX_BUF_NUM; i++) {
lp->rx_skbs[i].skb =
alloc_rxbuf_skb(dev, lp->pci_dev,
&lp->rx_skbs[i].skb_dma);
if (!lp->rx_skbs[i].skb) {
while (--i >= 0) {
free_rxbuf_skb(lp->pci_dev,
lp->rx_skbs[i].skb,
lp->rx_skbs[i].skb_dma);
lp->rx_skbs[i].skb = NULL;
}
pci_free_consistent(lp->pci_dev,
PAGE_SIZE * FD_PAGE_NUM,
lp->fd_buf,
lp->fd_buf_dma);
lp->fd_buf = NULL;
return -ENOMEM;
}
}
printk(KERN_DEBUG "%s: FD buf %p DataBuf",
dev->name, lp->fd_buf);
printk("\n");
} else {
for (i = 0; i < FD_PAGE_NUM; i++)
clear_page((void *)((unsigned long)lp->fd_buf +
i * PAGE_SIZE));
}
fd_addr = (unsigned long)lp->fd_buf;
/* Free Descriptors (for Receive) */
lp->rfd_base = (struct RxFD *)fd_addr;
fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
for (i = 0; i < RX_FD_NUM; i++)
lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
lp->rfd_cur = lp->rfd_base;
lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
/* Transmit Descriptors */
lp->tfd_base = (struct TxFD *)fd_addr;
fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
for (i = 0; i < TX_FD_NUM; i++) {
lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
}
lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
lp->tfd_start = 0;
lp->tfd_end = 0;
/* Buffer List (for Receive) */
lp->fbl_ptr = (struct FrFD *)fd_addr;
lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
/*
* move all allocated skbs to head of rx_skbs[] array.
* fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
* tc35815_rx() had failed.
*/
lp->fbl_count = 0;
for (i = 0; i < RX_BUF_NUM; i++) {
if (lp->rx_skbs[i].skb) {
if (i != lp->fbl_count) {
lp->rx_skbs[lp->fbl_count].skb =
lp->rx_skbs[i].skb;
lp->rx_skbs[lp->fbl_count].skb_dma =
lp->rx_skbs[i].skb_dma;
}
lp->fbl_count++;
}
}
for (i = 0; i < RX_BUF_NUM; i++) {
if (i >= lp->fbl_count) {
lp->fbl_ptr->bd[i].BuffData = 0;
lp->fbl_ptr->bd[i].BDCtl = 0;
continue;
}
lp->fbl_ptr->bd[i].BuffData =
cpu_to_le32(lp->rx_skbs[i].skb_dma);
/* BDID is index of FrFD.bd[] */
lp->fbl_ptr->bd[i].BDCtl =
cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
RX_BUF_SIZE);
}
printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
return 0;
}
static void
tc35815_clear_queues(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
int i;
for (i = 0; i < TX_FD_NUM; i++) {
u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
struct sk_buff *skb =
fdsystem != 0xffffffff ?
lp->tx_skbs[fdsystem].skb : NULL;
#ifdef DEBUG
if (lp->tx_skbs[i].skb != skb) {
printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
panic_queues(dev);
}
#else
BUG_ON(lp->tx_skbs[i].skb != skb);
#endif
if (skb) {
pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
lp->tx_skbs[i].skb = NULL;
lp->tx_skbs[i].skb_dma = 0;
dev_kfree_skb_any(skb);
}
lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
}
tc35815_init_queues(dev);
}
static void
tc35815_free_queues(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
int i;
if (lp->tfd_base) {
for (i = 0; i < TX_FD_NUM; i++) {
u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
struct sk_buff *skb =
fdsystem != 0xffffffff ?
lp->tx_skbs[fdsystem].skb : NULL;
#ifdef DEBUG
if (lp->tx_skbs[i].skb != skb) {
printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
panic_queues(dev);
}
#else
BUG_ON(lp->tx_skbs[i].skb != skb);
#endif
if (skb) {
dev_kfree_skb(skb);
pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
lp->tx_skbs[i].skb = NULL;
lp->tx_skbs[i].skb_dma = 0;
}
lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
}
}
lp->rfd_base = NULL;
lp->rfd_limit = NULL;
lp->rfd_cur = NULL;
lp->fbl_ptr = NULL;
for (i = 0; i < RX_BUF_NUM; i++) {
if (lp->rx_skbs[i].skb) {
free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
lp->rx_skbs[i].skb_dma);
lp->rx_skbs[i].skb = NULL;
}
}
if (lp->fd_buf) {
pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
lp->fd_buf, lp->fd_buf_dma);
lp->fd_buf = NULL;
}
}
static void
dump_txfd(struct TxFD *fd)
{
printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
le32_to_cpu(fd->fd.FDNext),
le32_to_cpu(fd->fd.FDSystem),
le32_to_cpu(fd->fd.FDStat),
le32_to_cpu(fd->fd.FDCtl));
printk("BD: ");
printk(" %08x %08x",
le32_to_cpu(fd->bd.BuffData),
le32_to_cpu(fd->bd.BDCtl));
printk("\n");
}
static int
dump_rxfd(struct RxFD *fd)
{
int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
if (bd_count > 8)
bd_count = 8;
printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
le32_to_cpu(fd->fd.FDNext),
le32_to_cpu(fd->fd.FDSystem),
le32_to_cpu(fd->fd.FDStat),
le32_to_cpu(fd->fd.FDCtl));
if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
return 0;
printk("BD: ");
for (i = 0; i < bd_count; i++)
printk(" %08x %08x",
le32_to_cpu(fd->bd[i].BuffData),
le32_to_cpu(fd->bd[i].BDCtl));
printk("\n");
return bd_count;
}
#ifdef DEBUG
static void
dump_frfd(struct FrFD *fd)
{
int i;
printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
le32_to_cpu(fd->fd.FDNext),
le32_to_cpu(fd->fd.FDSystem),
le32_to_cpu(fd->fd.FDStat),
le32_to_cpu(fd->fd.FDCtl));
printk("BD: ");
for (i = 0; i < RX_BUF_NUM; i++)
printk(" %08x %08x",
le32_to_cpu(fd->bd[i].BuffData),
le32_to_cpu(fd->bd[i].BDCtl));
printk("\n");
}
static void
panic_queues(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
int i;
printk("TxFD base %p, start %u, end %u\n",
lp->tfd_base, lp->tfd_start, lp->tfd_end);
printk("RxFD base %p limit %p cur %p\n",
lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
printk("FrFD %p\n", lp->fbl_ptr);
for (i = 0; i < TX_FD_NUM; i++)
dump_txfd(&lp->tfd_base[i]);
for (i = 0; i < RX_FD_NUM; i++) {
int bd_count = dump_rxfd(&lp->rfd_base[i]);
i += (bd_count + 1) / 2; /* skip BDs */
}
dump_frfd(lp->fbl_ptr);
panic("%s: Illegal queue state.", dev->name);
}
#endif
static void print_eth(const u8 *add)
{
printk(KERN_DEBUG "print_eth(%p)\n", add);
printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
add + 6, add, add[12], add[13]);
}
static int tc35815_tx_full(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
return ((lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end);
}
static void tc35815_restart(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
if (lp->phy_dev) {
int timeout;
phy_write(lp->phy_dev, MII_BMCR, BMCR_RESET);
timeout = 100;
while (--timeout) {
if (!(phy_read(lp->phy_dev, MII_BMCR) & BMCR_RESET))
break;
udelay(1);
}
if (!timeout)
printk(KERN_ERR "%s: BMCR reset failed.\n", dev->name);
}
spin_lock_irq(&lp->lock);
tc35815_chip_reset(dev);
tc35815_clear_queues(dev);
tc35815_chip_init(dev);
/* Reconfigure CAM again since tc35815_chip_init() initialize it. */
tc35815_set_multicast_list(dev);
spin_unlock_irq(&lp->lock);
netif_wake_queue(dev);
}
static void tc35815_restart_work(struct work_struct *work)
{
struct tc35815_local *lp =
container_of(work, struct tc35815_local, restart_work);
struct net_device *dev = lp->dev;
tc35815_restart(dev);
}
static void tc35815_schedule_restart(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
/* disable interrupts */
tc_writel(0, &tr->Int_En);
tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
schedule_work(&lp->restart_work);
}
static void tc35815_tx_timeout(struct net_device *dev)
{
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
dev->name, tc_readl(&tr->Tx_Stat));
/* Try to restart the adaptor. */
tc35815_schedule_restart(dev);
dev->stats.tx_errors++;
}
/*
* Open/initialize the controller. This is called (in the current kernel)
* sometime after booting when the 'ifconfig' program is run.
*
* This routine should set everything up anew at each open, even
* registers that "should" only need to be set once at boot, so that
* there is non-reboot way to recover if something goes wrong.
*/
static int
tc35815_open(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
/*
* This is used if the interrupt line can turned off (shared).
* See 3c503.c for an example of selecting the IRQ at config-time.
*/
if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
dev->name, dev))
return -EAGAIN;
tc35815_chip_reset(dev);
if (tc35815_init_queues(dev) != 0) {
free_irq(dev->irq, dev);
return -EAGAIN;
}
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
napi_enable(&lp->napi);
/* Reset the hardware here. Don't forget to set the station address. */
spin_lock_irq(&lp->lock);
tc35815_chip_init(dev);
spin_unlock_irq(&lp->lock);
netif_carrier_off(dev);
/* schedule a link state check */
phy_start(lp->phy_dev);
/* We are now ready to accept transmit requeusts from
* the queueing layer of the networking.
*/
netif_start_queue(dev);
return 0;
}
/* This will only be invoked if your driver is _not_ in XOFF state.
* What this means is that you need not check it, and that this
* invariant will hold if you make sure that the netif_*_queue()
* calls are done at the proper times.
*/
static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
struct TxFD *txfd;
unsigned long flags;
/* If some error occurs while trying to transmit this
* packet, you should return '1' from this function.
* In such a case you _may not_ do anything to the
* SKB, it is still owned by the network queueing
* layer when an error is returned. This means you
* may not modify any SKB fields, you may not free
* the SKB, etc.
*/
/* This is the most common case for modern hardware.
* The spinlock protects this code from the TX complete
* hardware interrupt handler. Queue flow control is
* thus managed under this lock as well.
*/
spin_lock_irqsave(&lp->lock, flags);
/* failsafe... (handle txdone now if half of FDs are used) */
if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
TX_FD_NUM / 2)
tc35815_txdone(dev);
if (netif_msg_pktdata(lp))
print_eth(skb->data);
#ifdef DEBUG
if (lp->tx_skbs[lp->tfd_start].skb) {
printk("%s: tx_skbs conflict.\n", dev->name);
panic_queues(dev);
}
#else
BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
#endif
lp->tx_skbs[lp->tfd_start].skb = skb;
lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
/*add to ring */
txfd = &lp->tfd_base[lp->tfd_start];
txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
txfd->bd.BDCtl = cpu_to_le32(skb->len);
txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
if (lp->tfd_start == lp->tfd_end) {
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
/* Start DMA Transmitter. */
txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
if (netif_msg_tx_queued(lp)) {
printk("%s: starting TxFD.\n", dev->name);
dump_txfd(txfd);
}
tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
} else {
txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
if (netif_msg_tx_queued(lp)) {
printk("%s: queueing TxFD.\n", dev->name);
dump_txfd(txfd);
}
}
lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
dev->trans_start = jiffies;
/* If we just used up the very last entry in the
* TX ring on this device, tell the queueing
* layer to send no more.
*/
if (tc35815_tx_full(dev)) {
if (netif_msg_tx_queued(lp))
printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
netif_stop_queue(dev);
}
/* When the TX completion hw interrupt arrives, this
* is when the transmit statistics are updated.
*/
spin_unlock_irqrestore(&lp->lock, flags);
return NETDEV_TX_OK;
}
#define FATAL_ERROR_INT \
(Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
{
static int count;
printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
dev->name, status);
if (status & Int_IntPCI)
printk(" IntPCI");
if (status & Int_DmParErr)
printk(" DmParErr");
if (status & Int_IntNRAbt)
printk(" IntNRAbt");
printk("\n");
if (count++ > 100)
panic("%s: Too many fatal errors.", dev->name);
printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
/* Try to restart the adaptor. */
tc35815_schedule_restart(dev);
}
static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
{
struct tc35815_local *lp = netdev_priv(dev);
int ret = -1;
/* Fatal errors... */
if (status & FATAL_ERROR_INT) {
tc35815_fatal_error_interrupt(dev, status);
return 0;
}
/* recoverable errors */
if (status & Int_IntFDAEx) {
if (netif_msg_rx_err(lp))
dev_warn(&dev->dev,
"Free Descriptor Area Exhausted (%#x).\n",
status);
dev->stats.rx_dropped++;
ret = 0;
}
if (status & Int_IntBLEx) {
if (netif_msg_rx_err(lp))
dev_warn(&dev->dev,
"Buffer List Exhausted (%#x).\n",
status);
dev->stats.rx_dropped++;
ret = 0;
}
if (status & Int_IntExBD) {
if (netif_msg_rx_err(lp))
dev_warn(&dev->dev,
"Excessive Buffer Descriptiors (%#x).\n",
status);
dev->stats.rx_length_errors++;
ret = 0;
}
/* normal notification */
if (status & Int_IntMacRx) {
/* Got a packet(s). */
ret = tc35815_rx(dev, limit);
lp->lstats.rx_ints++;
}
if (status & Int_IntMacTx) {
/* Transmit complete. */
lp->lstats.tx_ints++;
tc35815_txdone(dev);
netif_wake_queue(dev);
if (ret < 0)
ret = 0;
}
return ret;
}
/*
* The typical workload of the driver:
* Handle the network interface interrupts.
*/
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
struct tc35815_local *lp = netdev_priv(dev);
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
u32 dmactl = tc_readl(&tr->DMA_Ctl);
if (!(dmactl & DMA_IntMask)) {
/* disable interrupts */
tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
if (napi_schedule_prep(&lp->napi))
__napi_schedule(&lp->napi);
else {
printk(KERN_ERR "%s: interrupt taken in poll\n",
dev->name);
BUG();
}
(void)tc_readl(&tr->Int_Src); /* flush */
return IRQ_HANDLED;
}
return IRQ_NONE;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void tc35815_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
tc35815_interrupt(dev->irq, dev);
enable_irq(dev->irq);
}
#endif
/* We have a good packet(s), get it/them out of the buffers. */
static int
tc35815_rx(struct net_device *dev, int limit)
{
struct tc35815_local *lp = netdev_priv(dev);
unsigned int fdctl;
int i;
int received = 0;
while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
int pkt_len = fdctl & FD_FDLength_MASK;
int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
#ifdef DEBUG
struct RxFD *next_rfd;
#endif
#if (RX_CTL_CMD & Rx_StripCRC) == 0
pkt_len -= ETH_FCS_LEN;
#endif
if (netif_msg_rx_status(lp))
dump_rxfd(lp->rfd_cur);
if (status & Rx_Good) {
struct sk_buff *skb;
unsigned char *data;
int cur_bd;
if (--limit < 0)
break;
BUG_ON(bd_count > 1);
cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
& BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
#ifdef DEBUG
if (cur_bd >= RX_BUF_NUM) {
printk("%s: invalid BDID.\n", dev->name);
panic_queues(dev);
}
BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
(le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
if (!lp->rx_skbs[cur_bd].skb) {
printk("%s: NULL skb.\n", dev->name);
panic_queues(dev);
}
#else
BUG_ON(cur_bd >= RX_BUF_NUM);
#endif
skb = lp->rx_skbs[cur_bd].skb;
prefetch(skb->data);
lp->rx_skbs[cur_bd].skb = NULL;
pci_unmap_single(lp->pci_dev,
lp->rx_skbs[cur_bd].skb_dma,
RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
memmove(skb->data, skb->data - NET_IP_ALIGN,
pkt_len);
data = skb_put(skb, pkt_len);
if (netif_msg_pktdata(lp))
print_eth(data);
skb->protocol = eth_type_trans(skb, dev);
netif_receive_skb(skb);
received++;
dev->stats.rx_packets++;
dev->stats.rx_bytes += pkt_len;
} else {
dev->stats.rx_errors++;
if (netif_msg_rx_err(lp))
dev_info(&dev->dev, "Rx error (status %x)\n",
status & Rx_Stat_Mask);
/* WORKAROUND: LongErr and CRCErr means Overflow. */
if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
status &= ~(Rx_LongErr|Rx_CRCErr);
status |= Rx_Over;
}
if (status & Rx_LongErr)
dev->stats.rx_length_errors++;
if (status & Rx_Over)
dev->stats.rx_fifo_errors++;
if (status & Rx_CRCErr)
dev->stats.rx_crc_errors++;
if (status & Rx_Align)
dev->stats.rx_frame_errors++;
}
if (bd_count > 0) {
/* put Free Buffer back to controller */
int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
unsigned char id =
(bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
#ifdef DEBUG
if (id >= RX_BUF_NUM) {
printk("%s: invalid BDID.\n", dev->name);
panic_queues(dev);
}
#else
BUG_ON(id >= RX_BUF_NUM);
#endif
/* free old buffers */
lp->fbl_count--;
while (lp->fbl_count < RX_BUF_NUM)
{
unsigned char curid =
(id + 1 + lp->fbl_count) % RX_BUF_NUM;
struct BDesc *bd = &lp->fbl_ptr->bd[curid];
#ifdef DEBUG
bdctl = le32_to_cpu(bd->BDCtl);
if (bdctl & BD_CownsBD) {
printk("%s: Freeing invalid BD.\n",
dev->name);
panic_queues(dev);
}
#endif
/* pass BD to controller */
if (!lp->rx_skbs[curid].skb) {
lp->rx_skbs[curid].skb =
alloc_rxbuf_skb(dev,
lp->pci_dev,
&lp->rx_skbs[curid].skb_dma);
if (!lp->rx_skbs[curid].skb)
break; /* try on next reception */
bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
}
/* Note: BDLength was modified by chip. */
bd->BDCtl = cpu_to_le32(BD_CownsBD |
(curid << BD_RxBDID_SHIFT) |
RX_BUF_SIZE);
lp->fbl_count++;
}
}
/* put RxFD back to controller */
#ifdef DEBUG
next_rfd = fd_bus_to_virt(lp,
le32_to_cpu(lp->rfd_cur->fd.FDNext));
if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
printk("%s: RxFD FDNext invalid.\n", dev->name);
panic_queues(dev);
}
#endif
for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
/* pass FD to controller */
#ifdef DEBUG
lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
#else
lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
#endif
lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
lp->rfd_cur++;
}
if (lp->rfd_cur > lp->rfd_limit)
lp->rfd_cur = lp->rfd_base;
#ifdef DEBUG
if (lp->rfd_cur != next_rfd)
printk("rfd_cur = %p, next_rfd %p\n",
lp->rfd_cur, next_rfd);
#endif
}
return received;
}
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
static int tc35815_poll(struct napi_struct *napi, int budget)
{
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
struct net_device *dev = lp->dev;
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int received = 0, handled;
u32 status;
spin_lock(&lp->lock);
status = tc_readl(&tr->Int_Src);
do {
/* BLEx, FDAEx will be cleared later */
tc_writel(status & ~(Int_BLEx | Int_FDAEx),
&tr->Int_Src); /* write to clear */
handled = tc35815_do_interrupt(dev, status, budget - received);
if (status & (Int_BLEx | Int_FDAEx))
tc_writel(status & (Int_BLEx | Int_FDAEx),
&tr->Int_Src);
if (handled >= 0) {
received += handled;
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
if (received >= budget)
break;
}
status = tc_readl(&tr->Int_Src);
} while (status);
spin_unlock(&lp->lock);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
if (received < budget) {
napi_complete(napi);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
/* enable interrupts */
tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
}
return received;
}
#define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
static void
tc35815_check_tx_stat(struct net_device *dev, int status)
{
struct tc35815_local *lp = netdev_priv(dev);
const char *msg = NULL;
/* count collisions */
if (status & Tx_ExColl)
dev->stats.collisions += 16;
if (status & Tx_TxColl_MASK)
dev->stats.collisions += status & Tx_TxColl_MASK;
/* TX4939 does not have NCarr */
if (lp->chiptype == TC35815_TX4939)
status &= ~Tx_NCarr;
/* WORKAROUND: ignore LostCrS in full duplex operation */
if (!lp->link || lp->duplex == DUPLEX_FULL)
status &= ~Tx_NCarr;
if (!(status & TX_STA_ERR)) {
/* no error. */
dev->stats.tx_packets++;
return;
}
dev->stats.tx_errors++;
if (status & Tx_ExColl) {
dev->stats.tx_aborted_errors++;
msg = "Excessive Collision.";
}
if (status & Tx_Under) {
dev->stats.tx_fifo_errors++;
msg = "Tx FIFO Underrun.";
if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
lp->lstats.tx_underrun++;
if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
msg = "Tx FIFO Underrun.Change Tx threshold to max.";
}
}
}
if (status & Tx_Defer) {
dev->stats.tx_fifo_errors++;
msg = "Excessive Deferral.";
}
if (status & Tx_NCarr) {
dev->stats.tx_carrier_errors++;
msg = "Lost Carrier Sense.";
}
if (status & Tx_LateColl) {
dev->stats.tx_aborted_errors++;
msg = "Late Collision.";
}
if (status & Tx_TxPar) {
dev->stats.tx_fifo_errors++;
msg = "Transmit Parity Error.";
}
if (status & Tx_SQErr) {
dev->stats.tx_heartbeat_errors++;
msg = "Signal Quality Error.";
}
if (msg && netif_msg_tx_err(lp))
printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
}
/* This handles TX complete events posted by the device
* via interrupts.
*/
static void
tc35815_txdone(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
struct TxFD *txfd;
unsigned int fdctl;
txfd = &lp->tfd_base[lp->tfd_end];
while (lp->tfd_start != lp->tfd_end &&
!((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
int status = le32_to_cpu(txfd->fd.FDStat);
struct sk_buff *skb;
unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
if (netif_msg_tx_done(lp)) {
printk("%s: complete TxFD.\n", dev->name);
dump_txfd(txfd);
}
tc35815_check_tx_stat(dev, status);
skb = fdsystem != 0xffffffff ?
lp->tx_skbs[fdsystem].skb : NULL;
#ifdef DEBUG
if (lp->tx_skbs[lp->tfd_end].skb != skb) {
printk("%s: tx_skbs mismatch.\n", dev->name);
panic_queues(dev);
}
#else
BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
#endif
if (skb) {
dev->stats.tx_bytes += skb->len;
pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
lp->tx_skbs[lp->tfd_end].skb = NULL;
lp->tx_skbs[lp->tfd_end].skb_dma = 0;
dev_kfree_skb_any(skb);
}
txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
txfd = &lp->tfd_base[lp->tfd_end];
#ifdef DEBUG
if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
printk("%s: TxFD FDNext invalid.\n", dev->name);
panic_queues(dev);
}
#endif
if (fdnext & FD_Next_EOL) {
/* DMA Transmitter has been stopping... */
if (lp->tfd_end != lp->tfd_start) {
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
struct TxFD *txhead = &lp->tfd_base[head];
int qlen = (lp->tfd_start + TX_FD_NUM
- lp->tfd_end) % TX_FD_NUM;
#ifdef DEBUG
if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
printk("%s: TxFD FDCtl invalid.\n", dev->name);
panic_queues(dev);
}
#endif
/* log max queue length */
if (lp->lstats.max_tx_qlen < qlen)
lp->lstats.max_tx_qlen = qlen;
/* start DMA Transmitter again */
txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
if (netif_msg_tx_queued(lp)) {
printk("%s: start TxFD on queue.\n",
dev->name);
dump_txfd(txfd);
}
tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
}
break;
}
}
/* If we had stopped the queue due to a "tx full"
* condition, and space has now been made available,
* wake up the queue.
*/
if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
netif_wake_queue(dev);
}
/* The inverse routine to tc35815_open(). */
static int
tc35815_close(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
netif_stop_queue(dev);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
napi_disable(&lp->napi);
if (lp->phy_dev)
phy_stop(lp->phy_dev);
cancel_work_sync(&lp->restart_work);
/* Flush the Tx and disable Rx here. */
tc35815_chip_reset(dev);
free_irq(dev->irq, dev);
tc35815_free_queues(dev);
return 0;
}
/*
* Get the current statistics.
* This may be called with the card open or closed.
*/
static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
{
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
if (netif_running(dev))
/* Update the statistics from the device registers. */
dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
return &dev->stats;
}
static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
{
struct tc35815_local *lp = netdev_priv(dev);
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int cam_index = index * 6;
u32 cam_data;
u32 saved_addr;
saved_addr = tc_readl(&tr->CAM_Adr);
if (netif_msg_hw(lp))
printk(KERN_DEBUG "%s: CAM %d: %pM\n",
dev->name, index, addr);
if (index & 1) {
/* read modify write */
tc_writel(cam_index - 2, &tr->CAM_Adr);
cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
cam_data |= addr[0] << 8 | addr[1];
tc_writel(cam_data, &tr->CAM_Data);
/* write whole word */
tc_writel(cam_index + 2, &tr->CAM_Adr);
cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
tc_writel(cam_data, &tr->CAM_Data);
} else {
/* write whole word */
tc_writel(cam_index, &tr->CAM_Adr);
cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
tc_writel(cam_data, &tr->CAM_Data);
/* read modify write */
tc_writel(cam_index + 4, &tr->CAM_Adr);
cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
cam_data |= addr[4] << 24 | (addr[5] << 16);
tc_writel(cam_data, &tr->CAM_Data);
}
tc_writel(saved_addr, &tr->CAM_Adr);
}
/*
* Set or clear the multicast filter for this adaptor.
* num_addrs == -1 Promiscuous mode, receive all packets
* num_addrs == 0 Normal mode, clear multicast list
* num_addrs > 0 Multicast mode, receive normal and MC packets,
* and do best-effort filtering.
*/
static void
tc35815_set_multicast_list(struct net_device *dev)
{
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
if (dev->flags & IFF_PROMISC) {
/* With some (all?) 100MHalf HUB, controller will hang
* if we enabled promiscuous mode before linkup... */
struct tc35815_local *lp = netdev_priv(dev);
if (!lp->link)
return;
/* Enable promiscuous mode */
tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
} else if ((dev->flags & IFF_ALLMULTI) ||
dev->mc_count > CAM_ENTRY_MAX - 3) {
/* CAM 0, 1, 20 are reserved. */
/* Disable promiscuous mode, use normal mode. */
tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
} else if (dev->mc_count) {
struct dev_mc_list *cur_addr = dev->mc_list;
int i;
int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
tc_writel(0, &tr->CAM_Ctl);
/* Walk the address list, and load the filter */
for (i = 0; i < dev->mc_count; i++, cur_addr = cur_addr->next) {
if (!cur_addr)
break;
/* entry 0,1 is reserved. */
tc35815_set_cam_entry(dev, i + 2, cur_addr->dmi_addr);
ena_bits |= CAM_Ena_Bit(i + 2);
}
tc_writel(ena_bits, &tr->CAM_Ena);
tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
} else {
tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
}
}
static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct tc35815_local *lp = netdev_priv(dev);
strcpy(info->driver, MODNAME);
strcpy(info->version, DRV_VERSION);
strcpy(info->bus_info, pci_name(lp->pci_dev));
}
static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct tc35815_local *lp = netdev_priv(dev);
if (!lp->phy_dev)
return -ENODEV;
return phy_ethtool_gset(lp->phy_dev, cmd);
}
static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct tc35815_local *lp = netdev_priv(dev);
if (!lp->phy_dev)
return -ENODEV;
return phy_ethtool_sset(lp->phy_dev, cmd);
}
static u32 tc35815_get_msglevel(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
return lp->msg_enable;
}
static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
{
struct tc35815_local *lp = netdev_priv(dev);
lp->msg_enable = datum;
}
static int tc35815_get_sset_count(struct net_device *dev, int sset)
{
struct tc35815_local *lp = netdev_priv(dev);
switch (sset) {
case ETH_SS_STATS:
return sizeof(lp->lstats) / sizeof(int);
default:
return -EOPNOTSUPP;
}
}
static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
{
struct tc35815_local *lp = netdev_priv(dev);
data[0] = lp->lstats.max_tx_qlen;
data[1] = lp->lstats.tx_ints;
data[2] = lp->lstats.rx_ints;
data[3] = lp->lstats.tx_underrun;
}
static struct {
const char str[ETH_GSTRING_LEN];
} ethtool_stats_keys[] = {
{ "max_tx_qlen" },
{ "tx_ints" },
{ "rx_ints" },
{ "tx_underrun" },
};
static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
}
static const struct ethtool_ops tc35815_ethtool_ops = {
.get_drvinfo = tc35815_get_drvinfo,
.get_settings = tc35815_get_settings,
.set_settings = tc35815_set_settings,
.get_link = ethtool_op_get_link,
.get_msglevel = tc35815_get_msglevel,
.set_msglevel = tc35815_set_msglevel,
.get_strings = tc35815_get_strings,
.get_sset_count = tc35815_get_sset_count,
.get_ethtool_stats = tc35815_get_ethtool_stats,
};
static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct tc35815_local *lp = netdev_priv(dev);
if (!netif_running(dev))
return -EINVAL;
if (!lp->phy_dev)
return -ENODEV;
return phy_mii_ioctl(lp->phy_dev, if_mii(rq), cmd);
}
static void tc35815_chip_reset(struct net_device *dev)
{
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int i;
/* reset the controller */
tc_writel(MAC_Reset, &tr->MAC_Ctl);
udelay(4); /* 3200ns */
i = 0;
while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
if (i++ > 100) {
printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
break;
}
mdelay(1);
}
tc_writel(0, &tr->MAC_Ctl);
/* initialize registers to default value */
tc_writel(0, &tr->DMA_Ctl);
tc_writel(0, &tr->TxThrsh);
tc_writel(0, &tr->TxPollCtr);
tc_writel(0, &tr->RxFragSize);
tc_writel(0, &tr->Int_En);
tc_writel(0, &tr->FDA_Bas);
tc_writel(0, &tr->FDA_Lim);
tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */
tc_writel(0, &tr->CAM_Ctl);
tc_writel(0, &tr->Tx_Ctl);
tc_writel(0, &tr->Rx_Ctl);
tc_writel(0, &tr->CAM_Ena);
(void)tc_readl(&tr->Miss_Cnt); /* Read to clear */
/* initialize internal SRAM */
tc_writel(DMA_TestMode, &tr->DMA_Ctl);
for (i = 0; i < 0x1000; i += 4) {
tc_writel(i, &tr->CAM_Adr);
tc_writel(0, &tr->CAM_Data);
}
tc_writel(0, &tr->DMA_Ctl);
}
static void tc35815_chip_init(struct net_device *dev)
{
struct tc35815_local *lp = netdev_priv(dev);
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
unsigned long txctl = TX_CTL_CMD;
/* load station address to CAM */
tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
/* Enable CAM (broadcast and unicast) */
tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
/* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
if (HAVE_DMA_RXALIGN(lp))
tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
else
tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
tc_writel(0, &tr->TxPollCtr); /* Batch mode */
tc_writel(TX_THRESHOLD, &tr->TxThrsh);
tc_writel(INT_EN_CMD, &tr->Int_En);
/* set queues */
tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
&tr->FDA_Lim);
/*
* Activation method:
* First, enable the MAC Transmitter and the DMA Receive circuits.
* Then enable the DMA Transmitter and the MAC Receive circuits.
*/
tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */
tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */
/* start MAC transmitter */
/* TX4939 does not have EnLCarr */
if (lp->chiptype == TC35815_TX4939)
txctl &= ~Tx_EnLCarr;
/* WORKAROUND: ignore LostCrS in full duplex operation */
if (!lp->phy_dev || !lp->link || lp->duplex == DUPLEX_FULL)
txctl &= ~Tx_EnLCarr;
tc_writel(txctl, &tr->Tx_Ctl);
}
#ifdef CONFIG_PM
static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct tc35815_local *lp = netdev_priv(dev);
unsigned long flags;
pci_save_state(pdev);
if (!netif_running(dev))
return 0;
netif_device_detach(dev);
if (lp->phy_dev)
phy_stop(lp->phy_dev);
spin_lock_irqsave(&lp->lock, flags);
tc35815_chip_reset(dev);
spin_unlock_irqrestore(&lp->lock, flags);
pci_set_power_state(pdev, PCI_D3hot);
return 0;
}
static int tc35815_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct tc35815_local *lp = netdev_priv(dev);
pci_restore_state(pdev);
if (!netif_running(dev))
return 0;
pci_set_power_state(pdev, PCI_D0);
tc35815_restart(dev);
netif_carrier_off(dev);
if (lp->phy_dev)
phy_start(lp->phy_dev);
netif_device_attach(dev);
return 0;
}
#endif /* CONFIG_PM */
static struct pci_driver tc35815_pci_driver = {
.name = MODNAME,
.id_table = tc35815_pci_tbl,
.probe = tc35815_init_one,
.remove = __devexit_p(tc35815_remove_one),
#ifdef CONFIG_PM
.suspend = tc35815_suspend,
.resume = tc35815_resume,
#endif
};
module_param_named(speed, options.speed, int, 0);
MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
module_param_named(duplex, options.duplex, int, 0);
MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
static int __init tc35815_init_module(void)
{
return pci_register_driver(&tc35815_pci_driver);
}
static void __exit tc35815_cleanup_module(void)
{
pci_unregister_driver(&tc35815_pci_driver);
}
module_init(tc35815_init_module);
module_exit(tc35815_cleanup_module);
MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
MODULE_LICENSE("GPL");