2005-04-16 22:20:36 +00:00
|
|
|
#ifndef _LINUX_FS_H
|
|
|
|
#define _LINUX_FS_H
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This file has definitions for some important file table
|
|
|
|
* structures etc.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/limits.h>
|
|
|
|
#include <linux/ioctl.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* It's silly to have NR_OPEN bigger than NR_FILE, but you can change
|
|
|
|
* the file limit at runtime and only root can increase the per-process
|
|
|
|
* nr_file rlimit, so it's safe to set up a ridiculously high absolute
|
|
|
|
* upper limit on files-per-process.
|
|
|
|
*
|
|
|
|
* Some programs (notably those using select()) may have to be
|
|
|
|
* recompiled to take full advantage of the new limits..
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Fixed constants first: */
|
|
|
|
#undef NR_OPEN
|
|
|
|
#define NR_OPEN (1024*1024) /* Absolute upper limit on fd num */
|
|
|
|
#define INR_OPEN 1024 /* Initial setting for nfile rlimits */
|
|
|
|
|
|
|
|
#define BLOCK_SIZE_BITS 10
|
|
|
|
#define BLOCK_SIZE (1<<BLOCK_SIZE_BITS)
|
|
|
|
|
2006-07-10 11:44:53 +00:00
|
|
|
#define SEEK_SET 0 /* seek relative to beginning of file */
|
|
|
|
#define SEEK_CUR 1 /* seek relative to current file position */
|
|
|
|
#define SEEK_END 2 /* seek relative to end of file */
|
2007-05-08 07:24:15 +00:00
|
|
|
#define SEEK_MAX SEEK_END
|
2006-07-10 11:44:53 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* And dynamically-tunable limits and defaults: */
|
|
|
|
struct files_stat_struct {
|
|
|
|
int nr_files; /* read only */
|
|
|
|
int nr_free_files; /* read only */
|
|
|
|
int max_files; /* tunable */
|
|
|
|
};
|
|
|
|
extern struct files_stat_struct files_stat;
|
2006-03-08 05:55:35 +00:00
|
|
|
extern int get_max_files(void);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
struct inodes_stat_t {
|
|
|
|
int nr_inodes;
|
|
|
|
int nr_unused;
|
2007-07-16 06:40:25 +00:00
|
|
|
int dummy[5]; /* padding for sysctl ABI compatibility */
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
extern struct inodes_stat_t inodes_stat;
|
|
|
|
|
|
|
|
extern int leases_enable, lease_break_time;
|
|
|
|
|
|
|
|
#ifdef CONFIG_DNOTIFY
|
|
|
|
extern int dir_notify_enable;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define NR_FILE 8192 /* this can well be larger on a larger system */
|
|
|
|
|
|
|
|
#define MAY_EXEC 1
|
|
|
|
#define MAY_WRITE 2
|
|
|
|
#define MAY_READ 4
|
|
|
|
#define MAY_APPEND 8
|
|
|
|
|
|
|
|
#define FMODE_READ 1
|
|
|
|
#define FMODE_WRITE 2
|
|
|
|
|
|
|
|
/* Internal kernel extensions */
|
|
|
|
#define FMODE_LSEEK 4
|
|
|
|
#define FMODE_PREAD 8
|
|
|
|
#define FMODE_PWRITE FMODE_PREAD /* These go hand in hand */
|
|
|
|
|
2006-03-25 11:07:01 +00:00
|
|
|
/* File is being opened for execution. Primary users of this flag are
|
|
|
|
distributed filesystems that can use it to achieve correct ETXTBUSY
|
|
|
|
behavior for cross-node execution/opening_for_writing of files */
|
|
|
|
#define FMODE_EXEC 16
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
#define RW_MASK 1
|
|
|
|
#define RWA_MASK 2
|
|
|
|
#define READ 0
|
|
|
|
#define WRITE 1
|
|
|
|
#define READA 2 /* read-ahead - don't block if no resources */
|
2005-09-06 22:19:10 +00:00
|
|
|
#define SWRITE 3 /* for ll_rw_block() - wait for buffer lock */
|
2005-04-16 22:20:36 +00:00
|
|
|
#define READ_SYNC (READ | (1 << BIO_RW_SYNC))
|
2006-08-10 07:01:02 +00:00
|
|
|
#define READ_META (READ | (1 << BIO_RW_META))
|
2005-04-16 22:20:36 +00:00
|
|
|
#define WRITE_SYNC (WRITE | (1 << BIO_RW_SYNC))
|
|
|
|
#define WRITE_BARRIER ((1 << BIO_RW) | (1 << BIO_RW_BARRIER))
|
|
|
|
|
|
|
|
#define SEL_IN 1
|
|
|
|
#define SEL_OUT 2
|
|
|
|
#define SEL_EX 4
|
|
|
|
|
|
|
|
/* public flags for file_system_type */
|
|
|
|
#define FS_REQUIRES_DEV 1
|
|
|
|
#define FS_BINARY_MOUNTDATA 2
|
add filesystem subtype support
There's a slight problem with filesystem type representation in fuse
based filesystems.
From the kernel's view, there are just two filesystem types: fuse and
fuseblk. From the user's view there are lots of different filesystem
types. The user is not even much concerned if the filesystem is fuse based
or not. So there's a conflict of interest in how this should be
represented in fstab, mtab and /proc/mounts.
The current scheme is to encode the real filesystem type in the mount
source. So an sshfs mount looks like this:
sshfs#user@server:/ /mnt/server fuse rw,nosuid,nodev,...
This url-ish syntax works OK for sshfs and similar filesystems. However
for block device based filesystems (ntfs-3g, zfs) it doesn't work, since
the kernel expects the mount source to be a real device name.
A possibly better scheme would be to encode the real type in the type
field as "type.subtype". So fuse mounts would look like this:
/dev/hda1 /mnt/windows fuseblk.ntfs-3g rw,...
user@server:/ /mnt/server fuse.sshfs rw,nosuid,nodev,...
This patch adds the necessary code to the kernel so that this can be
correctly displayed in /proc/mounts.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 07:25:43 +00:00
|
|
|
#define FS_HAS_SUBTYPE 4
|
2005-04-16 22:20:36 +00:00
|
|
|
#define FS_REVAL_DOT 16384 /* Check the paths ".", ".." for staleness */
|
2006-09-08 21:22:21 +00:00
|
|
|
#define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move()
|
|
|
|
* during rename() internally.
|
|
|
|
*/
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* These are the fs-independent mount-flags: up to 32 flags are supported
|
|
|
|
*/
|
|
|
|
#define MS_RDONLY 1 /* Mount read-only */
|
|
|
|
#define MS_NOSUID 2 /* Ignore suid and sgid bits */
|
|
|
|
#define MS_NODEV 4 /* Disallow access to device special files */
|
|
|
|
#define MS_NOEXEC 8 /* Disallow program execution */
|
|
|
|
#define MS_SYNCHRONOUS 16 /* Writes are synced at once */
|
|
|
|
#define MS_REMOUNT 32 /* Alter flags of a mounted FS */
|
|
|
|
#define MS_MANDLOCK 64 /* Allow mandatory locks on an FS */
|
|
|
|
#define MS_DIRSYNC 128 /* Directory modifications are synchronous */
|
|
|
|
#define MS_NOATIME 1024 /* Do not update access times. */
|
|
|
|
#define MS_NODIRATIME 2048 /* Do not update directory access times */
|
|
|
|
#define MS_BIND 4096
|
|
|
|
#define MS_MOVE 8192
|
|
|
|
#define MS_REC 16384
|
[PATCH] vfs: MS_VERBOSE should be MS_SILENT
The meaning of MS_VERBOSE is backwards; if the bit is set, it really means,
"don't be verbose". This is confusing and counter-intuitive.
In addition, there is also no way to set the MS_VERBOSE flag in the
mount(8) program in util-linux, but interesting, it does define options
which would do the right thing if MS_SILENT were defined, which
unfortunately we do not:
#ifdef MS_SILENT
{ "quiet", 0, 0, MS_SILENT }, /* be quiet */
{ "loud", 0, 1, MS_SILENT }, /* print out messages. */
#endif
So the obvious fix is to deprecate the use of MS_VERBOSE and replace it
with MS_SILENT.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-24 11:15:10 +00:00
|
|
|
#define MS_VERBOSE 32768 /* War is peace. Verbosity is silence.
|
|
|
|
MS_VERBOSE is deprecated. */
|
|
|
|
#define MS_SILENT 32768
|
2006-01-08 09:03:19 +00:00
|
|
|
#define MS_POSIXACL (1<<16) /* VFS does not apply the umask */
|
2005-11-07 22:21:20 +00:00
|
|
|
#define MS_UNBINDABLE (1<<17) /* change to unbindable */
|
2005-11-07 22:19:07 +00:00
|
|
|
#define MS_PRIVATE (1<<18) /* change to private */
|
2005-11-07 22:20:48 +00:00
|
|
|
#define MS_SLAVE (1<<19) /* change to slave */
|
2005-11-07 22:19:33 +00:00
|
|
|
#define MS_SHARED (1<<20) /* change to shared */
|
2006-12-13 08:34:34 +00:00
|
|
|
#define MS_RELATIME (1<<21) /* Update atime relative to mtime/ctime. */
|
2005-04-16 22:20:36 +00:00
|
|
|
#define MS_ACTIVE (1<<30)
|
|
|
|
#define MS_NOUSER (1<<31)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Superblock flags that can be altered by MS_REMOUNT
|
|
|
|
*/
|
2006-01-10 04:52:17 +00:00
|
|
|
#define MS_RMT_MASK (MS_RDONLY|MS_SYNCHRONOUS|MS_MANDLOCK)
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Old magic mount flag and mask
|
|
|
|
*/
|
|
|
|
#define MS_MGC_VAL 0xC0ED0000
|
|
|
|
#define MS_MGC_MSK 0xffff0000
|
|
|
|
|
|
|
|
/* Inode flags - they have nothing to superblock flags now */
|
|
|
|
|
|
|
|
#define S_SYNC 1 /* Writes are synced at once */
|
|
|
|
#define S_NOATIME 2 /* Do not update access times */
|
|
|
|
#define S_APPEND 4 /* Append-only file */
|
|
|
|
#define S_IMMUTABLE 8 /* Immutable file */
|
|
|
|
#define S_DEAD 16 /* removed, but still open directory */
|
|
|
|
#define S_NOQUOTA 32 /* Inode is not counted to quota */
|
|
|
|
#define S_DIRSYNC 64 /* Directory modifications are synchronous */
|
|
|
|
#define S_NOCMTIME 128 /* Do not update file c/mtime */
|
|
|
|
#define S_SWAPFILE 256 /* Do not truncate: swapon got its bmaps */
|
|
|
|
#define S_PRIVATE 512 /* Inode is fs-internal */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Note that nosuid etc flags are inode-specific: setting some file-system
|
|
|
|
* flags just means all the inodes inherit those flags by default. It might be
|
|
|
|
* possible to override it selectively if you really wanted to with some
|
|
|
|
* ioctl() that is not currently implemented.
|
|
|
|
*
|
|
|
|
* Exception: MS_RDONLY is always applied to the entire file system.
|
|
|
|
*
|
|
|
|
* Unfortunately, it is possible to change a filesystems flags with it mounted
|
|
|
|
* with files in use. This means that all of the inodes will not have their
|
|
|
|
* i_flags updated. Hence, i_flags no longer inherit the superblock mount
|
|
|
|
* flags, so these have to be checked separately. -- rmk@arm.uk.linux.org
|
|
|
|
*/
|
|
|
|
#define __IS_FLG(inode,flg) ((inode)->i_sb->s_flags & (flg))
|
|
|
|
|
|
|
|
#define IS_RDONLY(inode) ((inode)->i_sb->s_flags & MS_RDONLY)
|
|
|
|
#define IS_SYNC(inode) (__IS_FLG(inode, MS_SYNCHRONOUS) || \
|
|
|
|
((inode)->i_flags & S_SYNC))
|
|
|
|
#define IS_DIRSYNC(inode) (__IS_FLG(inode, MS_SYNCHRONOUS|MS_DIRSYNC) || \
|
|
|
|
((inode)->i_flags & (S_SYNC|S_DIRSYNC)))
|
|
|
|
#define IS_MANDLOCK(inode) __IS_FLG(inode, MS_MANDLOCK)
|
2007-02-10 09:44:49 +00:00
|
|
|
#define IS_NOATIME(inode) __IS_FLG(inode, MS_RDONLY|MS_NOATIME)
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
#define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA)
|
|
|
|
#define IS_APPEND(inode) ((inode)->i_flags & S_APPEND)
|
|
|
|
#define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE)
|
|
|
|
#define IS_POSIXACL(inode) __IS_FLG(inode, MS_POSIXACL)
|
|
|
|
|
|
|
|
#define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD)
|
|
|
|
#define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME)
|
|
|
|
#define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE)
|
|
|
|
#define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE)
|
|
|
|
|
|
|
|
/* the read-only stuff doesn't really belong here, but any other place is
|
|
|
|
probably as bad and I don't want to create yet another include file. */
|
|
|
|
|
|
|
|
#define BLKROSET _IO(0x12,93) /* set device read-only (0 = read-write) */
|
|
|
|
#define BLKROGET _IO(0x12,94) /* get read-only status (0 = read_write) */
|
|
|
|
#define BLKRRPART _IO(0x12,95) /* re-read partition table */
|
|
|
|
#define BLKGETSIZE _IO(0x12,96) /* return device size /512 (long *arg) */
|
|
|
|
#define BLKFLSBUF _IO(0x12,97) /* flush buffer cache */
|
|
|
|
#define BLKRASET _IO(0x12,98) /* set read ahead for block device */
|
|
|
|
#define BLKRAGET _IO(0x12,99) /* get current read ahead setting */
|
|
|
|
#define BLKFRASET _IO(0x12,100)/* set filesystem (mm/filemap.c) read-ahead */
|
|
|
|
#define BLKFRAGET _IO(0x12,101)/* get filesystem (mm/filemap.c) read-ahead */
|
|
|
|
#define BLKSECTSET _IO(0x12,102)/* set max sectors per request (ll_rw_blk.c) */
|
|
|
|
#define BLKSECTGET _IO(0x12,103)/* get max sectors per request (ll_rw_blk.c) */
|
|
|
|
#define BLKSSZGET _IO(0x12,104)/* get block device sector size */
|
|
|
|
#if 0
|
|
|
|
#define BLKPG _IO(0x12,105)/* See blkpg.h */
|
|
|
|
|
|
|
|
/* Some people are morons. Do not use sizeof! */
|
|
|
|
|
|
|
|
#define BLKELVGET _IOR(0x12,106,size_t)/* elevator get */
|
|
|
|
#define BLKELVSET _IOW(0x12,107,size_t)/* elevator set */
|
|
|
|
/* This was here just to show that the number is taken -
|
|
|
|
probably all these _IO(0x12,*) ioctls should be moved to blkpg.h. */
|
|
|
|
#endif
|
|
|
|
/* A jump here: 108-111 have been used for various private purposes. */
|
|
|
|
#define BLKBSZGET _IOR(0x12,112,size_t)
|
|
|
|
#define BLKBSZSET _IOW(0x12,113,size_t)
|
|
|
|
#define BLKGETSIZE64 _IOR(0x12,114,size_t) /* return device size in bytes (u64 *arg) */
|
2006-03-23 19:00:26 +00:00
|
|
|
#define BLKTRACESETUP _IOWR(0x12,115,struct blk_user_trace_setup)
|
|
|
|
#define BLKTRACESTART _IO(0x12,116)
|
|
|
|
#define BLKTRACESTOP _IO(0x12,117)
|
|
|
|
#define BLKTRACETEARDOWN _IO(0x12,118)
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
#define BMAP_IOCTL 1 /* obsolete - kept for compatibility */
|
|
|
|
#define FIBMAP _IO(0x00,1) /* bmap access */
|
|
|
|
#define FIGETBSZ _IO(0x00,2) /* get the block size used for bmap */
|
|
|
|
|
2006-08-29 18:06:16 +00:00
|
|
|
#define FS_IOC_GETFLAGS _IOR('f', 1, long)
|
|
|
|
#define FS_IOC_SETFLAGS _IOW('f', 2, long)
|
|
|
|
#define FS_IOC_GETVERSION _IOR('v', 1, long)
|
|
|
|
#define FS_IOC_SETVERSION _IOW('v', 2, long)
|
|
|
|
#define FS_IOC32_GETFLAGS _IOR('f', 1, int)
|
|
|
|
#define FS_IOC32_SETFLAGS _IOW('f', 2, int)
|
|
|
|
#define FS_IOC32_GETVERSION _IOR('v', 1, int)
|
|
|
|
#define FS_IOC32_SETVERSION _IOW('v', 2, int)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Inode flags (FS_IOC_GETFLAGS / FS_IOC_SETFLAGS)
|
|
|
|
*/
|
|
|
|
#define FS_SECRM_FL 0x00000001 /* Secure deletion */
|
|
|
|
#define FS_UNRM_FL 0x00000002 /* Undelete */
|
|
|
|
#define FS_COMPR_FL 0x00000004 /* Compress file */
|
|
|
|
#define FS_SYNC_FL 0x00000008 /* Synchronous updates */
|
|
|
|
#define FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
|
|
|
|
#define FS_APPEND_FL 0x00000020 /* writes to file may only append */
|
|
|
|
#define FS_NODUMP_FL 0x00000040 /* do not dump file */
|
|
|
|
#define FS_NOATIME_FL 0x00000080 /* do not update atime */
|
|
|
|
/* Reserved for compression usage... */
|
|
|
|
#define FS_DIRTY_FL 0x00000100
|
|
|
|
#define FS_COMPRBLK_FL 0x00000200 /* One or more compressed clusters */
|
|
|
|
#define FS_NOCOMP_FL 0x00000400 /* Don't compress */
|
|
|
|
#define FS_ECOMPR_FL 0x00000800 /* Compression error */
|
|
|
|
/* End compression flags --- maybe not all used */
|
|
|
|
#define FS_BTREE_FL 0x00001000 /* btree format dir */
|
|
|
|
#define FS_INDEX_FL 0x00001000 /* hash-indexed directory */
|
|
|
|
#define FS_IMAGIC_FL 0x00002000 /* AFS directory */
|
|
|
|
#define FS_JOURNAL_DATA_FL 0x00004000 /* Reserved for ext3 */
|
|
|
|
#define FS_NOTAIL_FL 0x00008000 /* file tail should not be merged */
|
|
|
|
#define FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
|
|
|
|
#define FS_TOPDIR_FL 0x00020000 /* Top of directory hierarchies*/
|
2006-10-02 15:24:43 +00:00
|
|
|
#define FS_EXTENT_FL 0x00080000 /* Extents */
|
|
|
|
#define FS_DIRECTIO_FL 0x00100000 /* Use direct i/o */
|
2006-08-29 18:06:16 +00:00
|
|
|
#define FS_RESERVED_FL 0x80000000 /* reserved for ext2 lib */
|
|
|
|
|
|
|
|
#define FS_FL_USER_VISIBLE 0x0003DFFF /* User visible flags */
|
|
|
|
#define FS_FL_USER_MODIFIABLE 0x000380FF /* User modifiable flags */
|
|
|
|
|
|
|
|
|
2006-05-23 05:35:24 +00:00
|
|
|
#define SYNC_FILE_RANGE_WAIT_BEFORE 1
|
|
|
|
#define SYNC_FILE_RANGE_WRITE 2
|
|
|
|
#define SYNC_FILE_RANGE_WAIT_AFTER 4
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
#ifdef __KERNEL__
|
|
|
|
|
|
|
|
#include <linux/linkage.h>
|
|
|
|
#include <linux/wait.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/kdev_t.h>
|
|
|
|
#include <linux/dcache.h>
|
2006-12-08 10:36:35 +00:00
|
|
|
#include <linux/namei.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <linux/stat.h>
|
|
|
|
#include <linux/cache.h>
|
|
|
|
#include <linux/kobject.h>
|
|
|
|
#include <linux/list.h>
|
|
|
|
#include <linux/radix-tree.h>
|
|
|
|
#include <linux/prio_tree.h>
|
|
|
|
#include <linux/init.h>
|
2006-10-18 17:55:46 +00:00
|
|
|
#include <linux/pid.h>
|
2006-01-09 23:59:24 +00:00
|
|
|
#include <linux/mutex.h>
|
2007-07-17 09:30:08 +00:00
|
|
|
#include <linux/capability.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
#include <asm/atomic.h>
|
|
|
|
#include <asm/semaphore.h>
|
|
|
|
#include <asm/byteorder.h>
|
|
|
|
|
2007-07-17 11:04:28 +00:00
|
|
|
struct export_operations;
|
2006-01-08 09:02:50 +00:00
|
|
|
struct hd_geometry;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct iovec;
|
|
|
|
struct nameidata;
|
2005-06-24 05:00:59 +00:00
|
|
|
struct kiocb;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct pipe_inode_info;
|
|
|
|
struct poll_table_struct;
|
|
|
|
struct kstatfs;
|
|
|
|
struct vm_area_struct;
|
|
|
|
struct vfsmount;
|
|
|
|
|
2007-10-17 06:26:30 +00:00
|
|
|
extern void __init inode_init(void);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern void __init inode_init_early(void);
|
2007-10-17 06:26:30 +00:00
|
|
|
extern void __init mnt_init(void);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern void __init files_init(unsigned long);
|
|
|
|
|
|
|
|
struct buffer_head;
|
|
|
|
typedef int (get_block_t)(struct inode *inode, sector_t iblock,
|
|
|
|
struct buffer_head *bh_result, int create);
|
2005-06-24 05:00:59 +00:00
|
|
|
typedef void (dio_iodone_t)(struct kiocb *iocb, loff_t offset,
|
2005-04-16 22:20:36 +00:00
|
|
|
ssize_t bytes, void *private);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Attribute flags. These should be or-ed together to figure out what
|
|
|
|
* has been changed!
|
|
|
|
*/
|
|
|
|
#define ATTR_MODE 1
|
|
|
|
#define ATTR_UID 2
|
|
|
|
#define ATTR_GID 4
|
|
|
|
#define ATTR_SIZE 8
|
|
|
|
#define ATTR_ATIME 16
|
|
|
|
#define ATTR_MTIME 32
|
|
|
|
#define ATTR_CTIME 64
|
|
|
|
#define ATTR_ATIME_SET 128
|
|
|
|
#define ATTR_MTIME_SET 256
|
|
|
|
#define ATTR_FORCE 512 /* Not a change, but a change it */
|
|
|
|
#define ATTR_ATTR_FLAG 1024
|
|
|
|
#define ATTR_KILL_SUID 2048
|
|
|
|
#define ATTR_KILL_SGID 4096
|
2005-11-07 08:59:49 +00:00
|
|
|
#define ATTR_FILE 8192
|
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a
subset of root's powers regardless of who runs them, without having to use
setuid and giving the binary all of root's powers.
This version works with Kaigai Kohei's userspace tools, found at
http://www.kaigai.gr.jp/index.php. For more information on how to use this
patch, Chris Friedhoff has posted a nice page at
http://www.friedhoff.org/fscaps.html.
Changelog:
Nov 27:
Incorporate fixes from Andrew Morton
(security-introduce-file-caps-tweaks and
security-introduce-file-caps-warning-fix)
Fix Kconfig dependency.
Fix change signaling behavior when file caps are not compiled in.
Nov 13:
Integrate comments from Alexey: Remove CONFIG_ ifdef from
capability.h, and use %zd for printing a size_t.
Nov 13:
Fix endianness warnings by sparse as suggested by Alexey
Dobriyan.
Nov 09:
Address warnings of unused variables at cap_bprm_set_security
when file capabilities are disabled, and simultaneously clean
up the code a little, by pulling the new code into a helper
function.
Nov 08:
For pointers to required userspace tools and how to use
them, see http://www.friedhoff.org/fscaps.html.
Nov 07:
Fix the calculation of the highest bit checked in
check_cap_sanity().
Nov 07:
Allow file caps to be enabled without CONFIG_SECURITY, since
capabilities are the default.
Hook cap_task_setscheduler when !CONFIG_SECURITY.
Move capable(TASK_KILL) to end of cap_task_kill to reduce
audit messages.
Nov 05:
Add secondary calls in selinux/hooks.c to task_setioprio and
task_setscheduler so that selinux and capabilities with file
cap support can be stacked.
Sep 05:
As Seth Arnold points out, uid checks are out of place
for capability code.
Sep 01:
Define task_setscheduler, task_setioprio, cap_task_kill, and
task_setnice to make sure a user cannot affect a process in which
they called a program with some fscaps.
One remaining question is the note under task_setscheduler: are we
ok with CAP_SYS_NICE being sufficient to confine a process to a
cpuset?
It is a semantic change, as without fsccaps, attach_task doesn't
allow CAP_SYS_NICE to override the uid equivalence check. But since
it uses security_task_setscheduler, which elsewhere is used where
CAP_SYS_NICE can be used to override the uid equivalence check,
fixing it might be tough.
task_setscheduler
note: this also controls cpuset:attach_task. Are we ok with
CAP_SYS_NICE being used to confine to a cpuset?
task_setioprio
task_setnice
sys_setpriority uses this (through set_one_prio) for another
process. Need same checks as setrlimit
Aug 21:
Updated secureexec implementation to reflect the fact that
euid and uid might be the same and nonzero, but the process
might still have elevated caps.
Aug 15:
Handle endianness of xattrs.
Enforce capability version match between kernel and disk.
Enforce that no bits beyond the known max capability are
set, else return -EPERM.
With this extra processing, it may be worth reconsidering
doing all the work at bprm_set_security rather than
d_instantiate.
Aug 10:
Always call getxattr at bprm_set_security, rather than
caching it at d_instantiate.
[morgan@kernel.org: file-caps clean up for linux/capability.h]
[bunk@kernel.org: unexport cap_inode_killpriv]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Andrew Morgan <morgan@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 06:31:36 +00:00
|
|
|
#define ATTR_KILL_PRIV 16384
|
2007-10-18 10:07:00 +00:00
|
|
|
#define ATTR_OPEN 32768 /* Truncating from open(O_TRUNC) */
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* This is the Inode Attributes structure, used for notify_change(). It
|
|
|
|
* uses the above definitions as flags, to know which values have changed.
|
|
|
|
* Also, in this manner, a Filesystem can look at only the values it cares
|
|
|
|
* about. Basically, these are the attributes that the VFS layer can
|
|
|
|
* request to change from the FS layer.
|
|
|
|
*
|
|
|
|
* Derek Atkins <warlord@MIT.EDU> 94-10-20
|
|
|
|
*/
|
|
|
|
struct iattr {
|
|
|
|
unsigned int ia_valid;
|
|
|
|
umode_t ia_mode;
|
|
|
|
uid_t ia_uid;
|
|
|
|
gid_t ia_gid;
|
|
|
|
loff_t ia_size;
|
|
|
|
struct timespec ia_atime;
|
|
|
|
struct timespec ia_mtime;
|
|
|
|
struct timespec ia_ctime;
|
2005-11-07 08:59:49 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Not an attribute, but an auxilary info for filesystems wanting to
|
|
|
|
* implement an ftruncate() like method. NOTE: filesystem should
|
|
|
|
* check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL).
|
|
|
|
*/
|
|
|
|
struct file *ia_file;
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Includes for diskquotas.
|
|
|
|
*/
|
|
|
|
#include <linux/quota.h>
|
|
|
|
|
2005-12-15 22:28:17 +00:00
|
|
|
/**
|
|
|
|
* enum positive_aop_returns - aop return codes with specific semantics
|
|
|
|
*
|
|
|
|
* @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has
|
|
|
|
* completed, that the page is still locked, and
|
|
|
|
* should be considered active. The VM uses this hint
|
|
|
|
* to return the page to the active list -- it won't
|
|
|
|
* be a candidate for writeback again in the near
|
|
|
|
* future. Other callers must be careful to unlock
|
|
|
|
* the page if they get this return. Returned by
|
|
|
|
* writepage();
|
|
|
|
*
|
|
|
|
* @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has
|
|
|
|
* unlocked it and the page might have been truncated.
|
|
|
|
* The caller should back up to acquiring a new page and
|
|
|
|
* trying again. The aop will be taking reasonable
|
|
|
|
* precautions not to livelock. If the caller held a page
|
|
|
|
* reference, it should drop it before retrying. Returned
|
2007-10-16 08:25:26 +00:00
|
|
|
* by readpage().
|
2005-12-15 22:28:17 +00:00
|
|
|
*
|
|
|
|
* address_space_operation functions return these large constants to indicate
|
|
|
|
* special semantics to the caller. These are much larger than the bytes in a
|
|
|
|
* page to allow for functions that return the number of bytes operated on in a
|
|
|
|
* given page.
|
|
|
|
*/
|
|
|
|
|
|
|
|
enum positive_aop_returns {
|
|
|
|
AOP_WRITEPAGE_ACTIVATE = 0x80000,
|
|
|
|
AOP_TRUNCATED_PAGE = 0x80001,
|
|
|
|
};
|
|
|
|
|
2007-10-16 08:25:01 +00:00
|
|
|
#define AOP_FLAG_UNINTERRUPTIBLE 0x0001 /* will not do a short write */
|
2007-10-16 08:25:07 +00:00
|
|
|
#define AOP_FLAG_CONT_EXPAND 0x0002 /* called from cont_expand */
|
2007-10-16 08:25:01 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* oh the beauties of C type declarations.
|
|
|
|
*/
|
|
|
|
struct page;
|
|
|
|
struct address_space;
|
|
|
|
struct writeback_control;
|
|
|
|
|
2007-10-16 08:24:59 +00:00
|
|
|
struct iov_iter {
|
|
|
|
const struct iovec *iov;
|
|
|
|
unsigned long nr_segs;
|
|
|
|
size_t iov_offset;
|
|
|
|
size_t count;
|
|
|
|
};
|
|
|
|
|
|
|
|
size_t iov_iter_copy_from_user_atomic(struct page *page,
|
|
|
|
struct iov_iter *i, unsigned long offset, size_t bytes);
|
|
|
|
size_t iov_iter_copy_from_user(struct page *page,
|
|
|
|
struct iov_iter *i, unsigned long offset, size_t bytes);
|
|
|
|
void iov_iter_advance(struct iov_iter *i, size_t bytes);
|
2007-10-16 08:25:01 +00:00
|
|
|
int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes);
|
2007-10-16 08:24:59 +00:00
|
|
|
size_t iov_iter_single_seg_count(struct iov_iter *i);
|
|
|
|
|
|
|
|
static inline void iov_iter_init(struct iov_iter *i,
|
|
|
|
const struct iovec *iov, unsigned long nr_segs,
|
|
|
|
size_t count, size_t written)
|
|
|
|
{
|
|
|
|
i->iov = iov;
|
|
|
|
i->nr_segs = nr_segs;
|
|
|
|
i->iov_offset = 0;
|
|
|
|
i->count = count + written;
|
|
|
|
|
|
|
|
iov_iter_advance(i, written);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline size_t iov_iter_count(struct iov_iter *i)
|
|
|
|
{
|
|
|
|
return i->count;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
struct address_space_operations {
|
|
|
|
int (*writepage)(struct page *page, struct writeback_control *wbc);
|
|
|
|
int (*readpage)(struct file *, struct page *);
|
2006-03-26 09:37:17 +00:00
|
|
|
void (*sync_page)(struct page *);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Write back some dirty pages from this mapping. */
|
|
|
|
int (*writepages)(struct address_space *, struct writeback_control *);
|
|
|
|
|
2006-03-24 11:18:11 +00:00
|
|
|
/* Set a page dirty. Return true if this dirtied it */
|
2005-04-16 22:20:36 +00:00
|
|
|
int (*set_page_dirty)(struct page *page);
|
|
|
|
|
|
|
|
int (*readpages)(struct file *filp, struct address_space *mapping,
|
|
|
|
struct list_head *pages, unsigned nr_pages);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ext3 requires that a successful prepare_write() call be followed
|
|
|
|
* by a commit_write() call - they must be balanced
|
|
|
|
*/
|
|
|
|
int (*prepare_write)(struct file *, struct page *, unsigned, unsigned);
|
|
|
|
int (*commit_write)(struct file *, struct page *, unsigned, unsigned);
|
2007-10-16 08:25:01 +00:00
|
|
|
|
|
|
|
int (*write_begin)(struct file *, struct address_space *mapping,
|
|
|
|
loff_t pos, unsigned len, unsigned flags,
|
|
|
|
struct page **pagep, void **fsdata);
|
|
|
|
int (*write_end)(struct file *, struct address_space *mapping,
|
|
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
|
|
struct page *page, void *fsdata);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Unfortunately this kludge is needed for FIBMAP. Don't use it */
|
|
|
|
sector_t (*bmap)(struct address_space *, sector_t);
|
2006-03-26 09:37:18 +00:00
|
|
|
void (*invalidatepage) (struct page *, unsigned long);
|
2005-10-21 07:20:48 +00:00
|
|
|
int (*releasepage) (struct page *, gfp_t);
|
2005-04-16 22:20:36 +00:00
|
|
|
ssize_t (*direct_IO)(int, struct kiocb *, const struct iovec *iov,
|
|
|
|
loff_t offset, unsigned long nr_segs);
|
2005-06-24 05:05:25 +00:00
|
|
|
struct page* (*get_xip_page)(struct address_space *, sector_t,
|
|
|
|
int);
|
2006-02-01 11:05:41 +00:00
|
|
|
/* migrate the contents of a page to the specified target */
|
2006-06-23 09:03:33 +00:00
|
|
|
int (*migratepage) (struct address_space *,
|
|
|
|
struct page *, struct page *);
|
2007-01-11 07:15:39 +00:00
|
|
|
int (*launder_page) (struct page *);
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
2007-10-16 08:25:01 +00:00
|
|
|
/*
|
|
|
|
* pagecache_write_begin/pagecache_write_end must be used by general code
|
|
|
|
* to write into the pagecache.
|
|
|
|
*/
|
|
|
|
int pagecache_write_begin(struct file *, struct address_space *mapping,
|
|
|
|
loff_t pos, unsigned len, unsigned flags,
|
|
|
|
struct page **pagep, void **fsdata);
|
|
|
|
|
|
|
|
int pagecache_write_end(struct file *, struct address_space *mapping,
|
|
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
|
|
struct page *page, void *fsdata);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
struct backing_dev_info;
|
|
|
|
struct address_space {
|
|
|
|
struct inode *host; /* owner: inode, block_device */
|
|
|
|
struct radix_tree_root page_tree; /* radix tree of all pages */
|
|
|
|
rwlock_t tree_lock; /* and rwlock protecting it */
|
|
|
|
unsigned int i_mmap_writable;/* count VM_SHARED mappings */
|
|
|
|
struct prio_tree_root i_mmap; /* tree of private and shared mappings */
|
|
|
|
struct list_head i_mmap_nonlinear;/*list VM_NONLINEAR mappings */
|
|
|
|
spinlock_t i_mmap_lock; /* protect tree, count, list */
|
|
|
|
unsigned int truncate_count; /* Cover race condition with truncate */
|
|
|
|
unsigned long nrpages; /* number of total pages */
|
|
|
|
pgoff_t writeback_index;/* writeback starts here */
|
2006-06-28 11:26:44 +00:00
|
|
|
const struct address_space_operations *a_ops; /* methods */
|
2005-04-16 22:20:36 +00:00
|
|
|
unsigned long flags; /* error bits/gfp mask */
|
|
|
|
struct backing_dev_info *backing_dev_info; /* device readahead, etc */
|
|
|
|
spinlock_t private_lock; /* for use by the address_space */
|
|
|
|
struct list_head private_list; /* ditto */
|
|
|
|
struct address_space *assoc_mapping; /* ditto */
|
|
|
|
} __attribute__((aligned(sizeof(long))));
|
|
|
|
/*
|
|
|
|
* On most architectures that alignment is already the case; but
|
|
|
|
* must be enforced here for CRIS, to let the least signficant bit
|
|
|
|
* of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON.
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct block_device {
|
|
|
|
dev_t bd_dev; /* not a kdev_t - it's a search key */
|
|
|
|
struct inode * bd_inode; /* will die */
|
|
|
|
int bd_openers;
|
2006-03-23 11:00:28 +00:00
|
|
|
struct mutex bd_mutex; /* open/close mutex */
|
2007-01-11 07:15:41 +00:00
|
|
|
struct semaphore bd_mount_sem;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct list_head bd_inodes;
|
|
|
|
void * bd_holder;
|
|
|
|
int bd_holders;
|
2006-03-27 09:17:57 +00:00
|
|
|
#ifdef CONFIG_SYSFS
|
|
|
|
struct list_head bd_holder_list;
|
|
|
|
#endif
|
2005-04-16 22:20:36 +00:00
|
|
|
struct block_device * bd_contains;
|
|
|
|
unsigned bd_block_size;
|
|
|
|
struct hd_struct * bd_part;
|
|
|
|
/* number of times partitions within this device have been opened. */
|
|
|
|
unsigned bd_part_count;
|
|
|
|
int bd_invalidated;
|
|
|
|
struct gendisk * bd_disk;
|
|
|
|
struct list_head bd_list;
|
|
|
|
struct backing_dev_info *bd_inode_backing_dev_info;
|
|
|
|
/*
|
|
|
|
* Private data. You must have bd_claim'ed the block_device
|
|
|
|
* to use this. NOTE: bd_claim allows an owner to claim
|
|
|
|
* the same device multiple times, the owner must take special
|
|
|
|
* care to not mess up bd_private for that case.
|
|
|
|
*/
|
|
|
|
unsigned long bd_private;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Radix-tree tags, for tagging dirty and writeback pages within the pagecache
|
|
|
|
* radix trees
|
|
|
|
*/
|
|
|
|
#define PAGECACHE_TAG_DIRTY 0
|
|
|
|
#define PAGECACHE_TAG_WRITEBACK 1
|
|
|
|
|
|
|
|
int mapping_tagged(struct address_space *mapping, int tag);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Might pages of this file be mapped into userspace?
|
|
|
|
*/
|
|
|
|
static inline int mapping_mapped(struct address_space *mapping)
|
|
|
|
{
|
|
|
|
return !prio_tree_empty(&mapping->i_mmap) ||
|
|
|
|
!list_empty(&mapping->i_mmap_nonlinear);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Might pages of this file have been modified in userspace?
|
|
|
|
* Note that i_mmap_writable counts all VM_SHARED vmas: do_mmap_pgoff
|
|
|
|
* marks vma as VM_SHARED if it is shared, and the file was opened for
|
|
|
|
* writing i.e. vma may be mprotected writable even if now readonly.
|
|
|
|
*/
|
|
|
|
static inline int mapping_writably_mapped(struct address_space *mapping)
|
|
|
|
{
|
|
|
|
return mapping->i_mmap_writable != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Use sequence counter to get consistent i_size on 32-bit processors.
|
|
|
|
*/
|
|
|
|
#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
|
|
|
|
#include <linux/seqlock.h>
|
|
|
|
#define __NEED_I_SIZE_ORDERED
|
|
|
|
#define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount)
|
|
|
|
#else
|
|
|
|
#define i_size_ordered_init(inode) do { } while (0)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
struct inode {
|
|
|
|
struct hlist_node i_hash;
|
|
|
|
struct list_head i_list;
|
|
|
|
struct list_head i_sb_list;
|
|
|
|
struct list_head i_dentry;
|
|
|
|
unsigned long i_ino;
|
|
|
|
atomic_t i_count;
|
|
|
|
unsigned int i_nlink;
|
|
|
|
uid_t i_uid;
|
|
|
|
gid_t i_gid;
|
|
|
|
dev_t i_rdev;
|
2006-12-07 04:38:53 +00:00
|
|
|
unsigned long i_version;
|
2005-04-16 22:20:36 +00:00
|
|
|
loff_t i_size;
|
2006-12-07 04:38:53 +00:00
|
|
|
#ifdef __NEED_I_SIZE_ORDERED
|
|
|
|
seqcount_t i_size_seqcount;
|
|
|
|
#endif
|
2005-04-16 22:20:36 +00:00
|
|
|
struct timespec i_atime;
|
|
|
|
struct timespec i_mtime;
|
|
|
|
struct timespec i_ctime;
|
|
|
|
unsigned int i_blkbits;
|
2006-03-26 09:37:52 +00:00
|
|
|
blkcnt_t i_blocks;
|
2005-04-16 22:20:36 +00:00
|
|
|
unsigned short i_bytes;
|
2006-12-07 04:39:53 +00:00
|
|
|
umode_t i_mode;
|
2005-04-16 22:20:36 +00:00
|
|
|
spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */
|
2006-01-09 23:59:24 +00:00
|
|
|
struct mutex i_mutex;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct rw_semaphore i_alloc_sem;
|
2007-02-12 08:55:40 +00:00
|
|
|
const struct inode_operations *i_op;
|
2006-03-28 09:56:41 +00:00
|
|
|
const struct file_operations *i_fop; /* former ->i_op->default_file_ops */
|
2005-04-16 22:20:36 +00:00
|
|
|
struct super_block *i_sb;
|
|
|
|
struct file_lock *i_flock;
|
|
|
|
struct address_space *i_mapping;
|
|
|
|
struct address_space i_data;
|
|
|
|
#ifdef CONFIG_QUOTA
|
|
|
|
struct dquot *i_dquot[MAXQUOTAS];
|
|
|
|
#endif
|
|
|
|
struct list_head i_devices;
|
2006-09-27 08:50:47 +00:00
|
|
|
union {
|
|
|
|
struct pipe_inode_info *i_pipe;
|
2006-09-27 08:50:48 +00:00
|
|
|
struct block_device *i_bdev;
|
2006-09-27 08:50:49 +00:00
|
|
|
struct cdev *i_cdev;
|
2006-09-27 08:50:47 +00:00
|
|
|
};
|
2005-04-16 22:20:36 +00:00
|
|
|
int i_cindex;
|
|
|
|
|
|
|
|
__u32 i_generation;
|
|
|
|
|
|
|
|
#ifdef CONFIG_DNOTIFY
|
|
|
|
unsigned long i_dnotify_mask; /* Directory notify events */
|
|
|
|
struct dnotify_struct *i_dnotify; /* for directory notifications */
|
|
|
|
#endif
|
|
|
|
|
[PATCH] inotify
inotify is intended to correct the deficiencies of dnotify, particularly
its inability to scale and its terrible user interface:
* dnotify requires the opening of one fd per each directory
that you intend to watch. This quickly results in too many
open files and pins removable media, preventing unmount.
* dnotify is directory-based. You only learn about changes to
directories. Sure, a change to a file in a directory affects
the directory, but you are then forced to keep a cache of
stat structures.
* dnotify's interface to user-space is awful. Signals?
inotify provides a more usable, simple, powerful solution to file change
notification:
* inotify's interface is a system call that returns a fd, not SIGIO.
You get a single fd, which is select()-able.
* inotify has an event that says "the filesystem that the item
you were watching is on was unmounted."
* inotify can watch directories or files.
Inotify is currently used by Beagle (a desktop search infrastructure),
Gamin (a FAM replacement), and other projects.
See Documentation/filesystems/inotify.txt.
Signed-off-by: Robert Love <rml@novell.com>
Cc: John McCutchan <ttb@tentacle.dhs.org>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-12 21:06:03 +00:00
|
|
|
#ifdef CONFIG_INOTIFY
|
|
|
|
struct list_head inotify_watches; /* watches on this inode */
|
2006-03-23 11:00:30 +00:00
|
|
|
struct mutex inotify_mutex; /* protects the watches list */
|
[PATCH] inotify
inotify is intended to correct the deficiencies of dnotify, particularly
its inability to scale and its terrible user interface:
* dnotify requires the opening of one fd per each directory
that you intend to watch. This quickly results in too many
open files and pins removable media, preventing unmount.
* dnotify is directory-based. You only learn about changes to
directories. Sure, a change to a file in a directory affects
the directory, but you are then forced to keep a cache of
stat structures.
* dnotify's interface to user-space is awful. Signals?
inotify provides a more usable, simple, powerful solution to file change
notification:
* inotify's interface is a system call that returns a fd, not SIGIO.
You get a single fd, which is select()-able.
* inotify has an event that says "the filesystem that the item
you were watching is on was unmounted."
* inotify can watch directories or files.
Inotify is currently used by Beagle (a desktop search infrastructure),
Gamin (a FAM replacement), and other projects.
See Documentation/filesystems/inotify.txt.
Signed-off-by: Robert Love <rml@novell.com>
Cc: John McCutchan <ttb@tentacle.dhs.org>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-12 21:06:03 +00:00
|
|
|
#endif
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
unsigned long i_state;
|
|
|
|
unsigned long dirtied_when; /* jiffies of first dirtying */
|
|
|
|
|
|
|
|
unsigned int i_flags;
|
|
|
|
|
|
|
|
atomic_t i_writecount;
|
[PATCH] fs.h: ifdef security fields
[assuming BSD security levels are deleted]
The only user of i_security, f_security, s_security fields is SELinux,
however, quite a few security modules are trying to get into kernel.
So, wrap them under CONFIG_SECURITY. Adding config option for each
security field is likely an overkill.
Following Stephen Smalley's suggestion, i_security initialization is
moved to security_inode_alloc() to not clutter core code with ifdefs
and make alloc_inode() codepath tiny little bit smaller and faster.
The user of (highly greppable) struct fown_struct::security field is
still to be found. I've checked every "fown_struct" and every "f_owner"
occurence. Additionally it's removal doesn't break i386 allmodconfig
build.
struct inode, struct file, struct super_block, struct fown_struct
become smaller.
P.S. Combined with two reiserfs inode shrinking patches sent to
linux-fsdevel, I can finally suck 12 reiserfs inodes into one page.
/proc/slabinfo
-ext2_inode_cache 388 10
+ext2_inode_cache 384 10
-inode_cache 280 14
+inode_cache 276 14
-proc_inode_cache 296 13
+proc_inode_cache 292 13
-reiser_inode_cache 336 11
+reiser_inode_cache 332 12 <=
-shmem_inode_cache 372 10
+shmem_inode_cache 368 10
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 09:00:01 +00:00
|
|
|
#ifdef CONFIG_SECURITY
|
2005-04-16 22:20:36 +00:00
|
|
|
void *i_security;
|
[PATCH] fs.h: ifdef security fields
[assuming BSD security levels are deleted]
The only user of i_security, f_security, s_security fields is SELinux,
however, quite a few security modules are trying to get into kernel.
So, wrap them under CONFIG_SECURITY. Adding config option for each
security field is likely an overkill.
Following Stephen Smalley's suggestion, i_security initialization is
moved to security_inode_alloc() to not clutter core code with ifdefs
and make alloc_inode() codepath tiny little bit smaller and faster.
The user of (highly greppable) struct fown_struct::security field is
still to be found. I've checked every "fown_struct" and every "f_owner"
occurence. Additionally it's removal doesn't break i386 allmodconfig
build.
struct inode, struct file, struct super_block, struct fown_struct
become smaller.
P.S. Combined with two reiserfs inode shrinking patches sent to
linux-fsdevel, I can finally suck 12 reiserfs inodes into one page.
/proc/slabinfo
-ext2_inode_cache 388 10
+ext2_inode_cache 384 10
-inode_cache 280 14
+inode_cache 276 14
-proc_inode_cache 296 13
+proc_inode_cache 292 13
-reiser_inode_cache 336 11
+reiser_inode_cache 332 12 <=
-shmem_inode_cache 372 10
+shmem_inode_cache 368 10
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 09:00:01 +00:00
|
|
|
#endif
|
2006-09-27 08:50:46 +00:00
|
|
|
void *i_private; /* fs or device private pointer */
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
2006-07-03 07:25:05 +00:00
|
|
|
/*
|
|
|
|
* inode->i_mutex nesting subclasses for the lock validator:
|
|
|
|
*
|
|
|
|
* 0: the object of the current VFS operation
|
|
|
|
* 1: parent
|
|
|
|
* 2: child/target
|
|
|
|
* 3: quota file
|
|
|
|
*
|
|
|
|
* The locking order between these classes is
|
2006-08-27 08:23:56 +00:00
|
|
|
* parent -> child -> normal -> xattr -> quota
|
2006-07-03 07:25:05 +00:00
|
|
|
*/
|
|
|
|
enum inode_i_mutex_lock_class
|
|
|
|
{
|
|
|
|
I_MUTEX_NORMAL,
|
|
|
|
I_MUTEX_PARENT,
|
|
|
|
I_MUTEX_CHILD,
|
2006-08-27 08:23:56 +00:00
|
|
|
I_MUTEX_XATTR,
|
2006-07-03 07:25:05 +00:00
|
|
|
I_MUTEX_QUOTA
|
|
|
|
};
|
|
|
|
|
2006-10-17 08:31:38 +00:00
|
|
|
extern void inode_double_lock(struct inode *inode1, struct inode *inode2);
|
|
|
|
extern void inode_double_unlock(struct inode *inode1, struct inode *inode2);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* NOTE: in a 32bit arch with a preemptable kernel and
|
|
|
|
* an UP compile the i_size_read/write must be atomic
|
|
|
|
* with respect to the local cpu (unlike with preempt disabled),
|
|
|
|
* but they don't need to be atomic with respect to other cpus like in
|
|
|
|
* true SMP (so they need either to either locally disable irq around
|
|
|
|
* the read or for example on x86 they can be still implemented as a
|
|
|
|
* cmpxchg8b without the need of the lock prefix). For SMP compiles
|
|
|
|
* and 64bit archs it makes no difference if preempt is enabled or not.
|
|
|
|
*/
|
2006-12-07 04:35:37 +00:00
|
|
|
static inline loff_t i_size_read(const struct inode *inode)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
|
|
|
|
loff_t i_size;
|
|
|
|
unsigned int seq;
|
|
|
|
|
|
|
|
do {
|
|
|
|
seq = read_seqcount_begin(&inode->i_size_seqcount);
|
|
|
|
i_size = inode->i_size;
|
|
|
|
} while (read_seqcount_retry(&inode->i_size_seqcount, seq));
|
|
|
|
return i_size;
|
|
|
|
#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPT)
|
|
|
|
loff_t i_size;
|
|
|
|
|
|
|
|
preempt_disable();
|
|
|
|
i_size = inode->i_size;
|
|
|
|
preempt_enable();
|
|
|
|
return i_size;
|
|
|
|
#else
|
|
|
|
return inode->i_size;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2006-10-17 07:10:07 +00:00
|
|
|
/*
|
|
|
|
* NOTE: unlike i_size_read(), i_size_write() does need locking around it
|
|
|
|
* (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount
|
|
|
|
* can be lost, resulting in subsequent i_size_read() calls spinning forever.
|
|
|
|
*/
|
2005-04-16 22:20:36 +00:00
|
|
|
static inline void i_size_write(struct inode *inode, loff_t i_size)
|
|
|
|
{
|
|
|
|
#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
|
|
|
|
write_seqcount_begin(&inode->i_size_seqcount);
|
|
|
|
inode->i_size = i_size;
|
|
|
|
write_seqcount_end(&inode->i_size_seqcount);
|
|
|
|
#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPT)
|
|
|
|
preempt_disable();
|
|
|
|
inode->i_size = i_size;
|
|
|
|
preempt_enable();
|
|
|
|
#else
|
|
|
|
inode->i_size = i_size;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2006-12-07 04:35:37 +00:00
|
|
|
static inline unsigned iminor(const struct inode *inode)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
return MINOR(inode->i_rdev);
|
|
|
|
}
|
|
|
|
|
2006-12-07 04:35:37 +00:00
|
|
|
static inline unsigned imajor(const struct inode *inode)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
return MAJOR(inode->i_rdev);
|
|
|
|
}
|
|
|
|
|
|
|
|
extern struct block_device *I_BDEV(struct inode *inode);
|
|
|
|
|
|
|
|
struct fown_struct {
|
|
|
|
rwlock_t lock; /* protects pid, uid, euid fields */
|
2006-10-02 09:17:15 +00:00
|
|
|
struct pid *pid; /* pid or -pgrp where SIGIO should be sent */
|
|
|
|
enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */
|
2005-04-16 22:20:36 +00:00
|
|
|
uid_t uid, euid; /* uid/euid of process setting the owner */
|
|
|
|
int signum; /* posix.1b rt signal to be delivered on IO */
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Track a single file's readahead state
|
|
|
|
*/
|
|
|
|
struct file_ra_state {
|
2007-10-16 08:24:31 +00:00
|
|
|
pgoff_t start; /* where readahead started */
|
|
|
|
unsigned int size; /* # of readahead pages */
|
|
|
|
unsigned int async_size; /* do asynchronous readahead when
|
2007-07-19 08:48:08 +00:00
|
|
|
there are only # of pages ahead */
|
2007-07-19 08:47:59 +00:00
|
|
|
|
2007-10-16 08:24:31 +00:00
|
|
|
unsigned int ra_pages; /* Maximum readahead window */
|
2007-10-16 08:24:32 +00:00
|
|
|
int mmap_miss; /* Cache miss stat for mmap accesses */
|
2007-10-16 08:24:33 +00:00
|
|
|
loff_t prev_pos; /* Cache last read() position */
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
2007-07-19 08:47:59 +00:00
|
|
|
/*
|
|
|
|
* Check if @index falls in the readahead windows.
|
|
|
|
*/
|
|
|
|
static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index)
|
|
|
|
{
|
2007-07-19 08:48:08 +00:00
|
|
|
return (index >= ra->start &&
|
|
|
|
index < ra->start + ra->size);
|
2007-07-19 08:47:59 +00:00
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
struct file {
|
2005-10-30 23:02:16 +00:00
|
|
|
/*
|
|
|
|
* fu_list becomes invalid after file_free is called and queued via
|
|
|
|
* fu_rcuhead for RCU freeing
|
|
|
|
*/
|
|
|
|
union {
|
|
|
|
struct list_head fu_list;
|
|
|
|
struct rcu_head fu_rcuhead;
|
|
|
|
} f_u;
|
2006-12-08 10:36:35 +00:00
|
|
|
struct path f_path;
|
|
|
|
#define f_dentry f_path.dentry
|
|
|
|
#define f_vfsmnt f_path.mnt
|
2006-03-28 09:56:41 +00:00
|
|
|
const struct file_operations *f_op;
|
2005-04-16 22:20:36 +00:00
|
|
|
atomic_t f_count;
|
|
|
|
unsigned int f_flags;
|
|
|
|
mode_t f_mode;
|
|
|
|
loff_t f_pos;
|
|
|
|
struct fown_struct f_owner;
|
|
|
|
unsigned int f_uid, f_gid;
|
|
|
|
struct file_ra_state f_ra;
|
|
|
|
|
2007-10-17 06:27:21 +00:00
|
|
|
u64 f_version;
|
[PATCH] fs.h: ifdef security fields
[assuming BSD security levels are deleted]
The only user of i_security, f_security, s_security fields is SELinux,
however, quite a few security modules are trying to get into kernel.
So, wrap them under CONFIG_SECURITY. Adding config option for each
security field is likely an overkill.
Following Stephen Smalley's suggestion, i_security initialization is
moved to security_inode_alloc() to not clutter core code with ifdefs
and make alloc_inode() codepath tiny little bit smaller and faster.
The user of (highly greppable) struct fown_struct::security field is
still to be found. I've checked every "fown_struct" and every "f_owner"
occurence. Additionally it's removal doesn't break i386 allmodconfig
build.
struct inode, struct file, struct super_block, struct fown_struct
become smaller.
P.S. Combined with two reiserfs inode shrinking patches sent to
linux-fsdevel, I can finally suck 12 reiserfs inodes into one page.
/proc/slabinfo
-ext2_inode_cache 388 10
+ext2_inode_cache 384 10
-inode_cache 280 14
+inode_cache 276 14
-proc_inode_cache 296 13
+proc_inode_cache 292 13
-reiser_inode_cache 336 11
+reiser_inode_cache 332 12 <=
-shmem_inode_cache 372 10
+shmem_inode_cache 368 10
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 09:00:01 +00:00
|
|
|
#ifdef CONFIG_SECURITY
|
2005-04-16 22:20:36 +00:00
|
|
|
void *f_security;
|
[PATCH] fs.h: ifdef security fields
[assuming BSD security levels are deleted]
The only user of i_security, f_security, s_security fields is SELinux,
however, quite a few security modules are trying to get into kernel.
So, wrap them under CONFIG_SECURITY. Adding config option for each
security field is likely an overkill.
Following Stephen Smalley's suggestion, i_security initialization is
moved to security_inode_alloc() to not clutter core code with ifdefs
and make alloc_inode() codepath tiny little bit smaller and faster.
The user of (highly greppable) struct fown_struct::security field is
still to be found. I've checked every "fown_struct" and every "f_owner"
occurence. Additionally it's removal doesn't break i386 allmodconfig
build.
struct inode, struct file, struct super_block, struct fown_struct
become smaller.
P.S. Combined with two reiserfs inode shrinking patches sent to
linux-fsdevel, I can finally suck 12 reiserfs inodes into one page.
/proc/slabinfo
-ext2_inode_cache 388 10
+ext2_inode_cache 384 10
-inode_cache 280 14
+inode_cache 276 14
-proc_inode_cache 296 13
+proc_inode_cache 292 13
-reiser_inode_cache 336 11
+reiser_inode_cache 332 12 <=
-shmem_inode_cache 372 10
+shmem_inode_cache 368 10
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 09:00:01 +00:00
|
|
|
#endif
|
2005-04-16 22:20:36 +00:00
|
|
|
/* needed for tty driver, and maybe others */
|
|
|
|
void *private_data;
|
|
|
|
|
|
|
|
#ifdef CONFIG_EPOLL
|
|
|
|
/* Used by fs/eventpoll.c to link all the hooks to this file */
|
|
|
|
struct list_head f_ep_links;
|
|
|
|
spinlock_t f_ep_lock;
|
|
|
|
#endif /* #ifdef CONFIG_EPOLL */
|
|
|
|
struct address_space *f_mapping;
|
|
|
|
};
|
|
|
|
extern spinlock_t files_lock;
|
|
|
|
#define file_list_lock() spin_lock(&files_lock);
|
|
|
|
#define file_list_unlock() spin_unlock(&files_lock);
|
|
|
|
|
2006-01-08 09:02:19 +00:00
|
|
|
#define get_file(x) atomic_inc(&(x)->f_count)
|
2005-04-16 22:20:36 +00:00
|
|
|
#define file_count(x) atomic_read(&(x)->f_count)
|
|
|
|
|
|
|
|
#define MAX_NON_LFS ((1UL<<31) - 1)
|
|
|
|
|
|
|
|
/* Page cache limit. The filesystems should put that into their s_maxbytes
|
|
|
|
limits, otherwise bad things can happen in VM. */
|
|
|
|
#if BITS_PER_LONG==32
|
|
|
|
#define MAX_LFS_FILESIZE (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
|
|
|
|
#elif BITS_PER_LONG==64
|
|
|
|
#define MAX_LFS_FILESIZE 0x7fffffffffffffffUL
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define FL_POSIX 1
|
|
|
|
#define FL_FLOCK 2
|
|
|
|
#define FL_ACCESS 8 /* not trying to lock, just looking */
|
2006-06-29 20:38:32 +00:00
|
|
|
#define FL_EXISTS 16 /* when unlocking, test for existence */
|
2005-04-16 22:20:36 +00:00
|
|
|
#define FL_LEASE 32 /* lease held on this file */
|
2006-06-23 09:05:12 +00:00
|
|
|
#define FL_CLOSE 64 /* unlock on close */
|
2005-04-16 22:20:36 +00:00
|
|
|
#define FL_SLEEP 128 /* A blocking lock */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The POSIX file lock owner is determined by
|
|
|
|
* the "struct files_struct" in the thread group
|
|
|
|
* (or NULL for no owner - BSD locks).
|
|
|
|
*
|
|
|
|
* Lockd stuffs a "host" pointer into this.
|
|
|
|
*/
|
|
|
|
typedef struct files_struct *fl_owner_t;
|
|
|
|
|
|
|
|
struct file_lock_operations {
|
|
|
|
void (*fl_insert)(struct file_lock *); /* lock insertion callback */
|
|
|
|
void (*fl_remove)(struct file_lock *); /* lock removal callback */
|
|
|
|
void (*fl_copy_lock)(struct file_lock *, struct file_lock *);
|
|
|
|
void (*fl_release_private)(struct file_lock *);
|
|
|
|
};
|
|
|
|
|
|
|
|
struct lock_manager_operations {
|
|
|
|
int (*fl_compare_owner)(struct file_lock *, struct file_lock *);
|
|
|
|
void (*fl_notify)(struct file_lock *); /* unblock callback */
|
locks: add fl_grant callback for asynchronous lock return
Acquiring a lock on a cluster filesystem may require communication with
remote hosts, and to avoid blocking lockd or nfsd threads during such
communication, we allow the results to be returned asynchronously.
When a ->lock() call needs to block, the file system will return
-EINPROGRESS, and then later return the results with a call to the
routine in the fl_grant field of the lock_manager_operations struct.
This differs from the case when ->lock returns -EAGAIN to a blocking
lock request; in that case, the filesystem calls fl_notify when the lock
is granted, and the caller retries the original lock. So while
fl_notify is merely a hint to the caller that it should retry, fl_grant
actually communicates the final result of the lock operation (with the
lock already acquired in the succesful case).
Therefore fl_grant takes a lock, a status and, for the test lock case, a
conflicting lock. We also allow fl_grant to return an error to the
filesystem, to handle the case where the fl_grant requests arrives after
the lock manager has already given up waiting for it.
Signed-off-by: Marc Eshel <eshel@almaden.ibm.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2006-12-06 04:31:28 +00:00
|
|
|
int (*fl_grant)(struct file_lock *, struct file_lock *, int);
|
2005-04-16 22:20:36 +00:00
|
|
|
void (*fl_copy_lock)(struct file_lock *, struct file_lock *);
|
|
|
|
void (*fl_release_private)(struct file_lock *);
|
|
|
|
void (*fl_break)(struct file_lock *);
|
|
|
|
int (*fl_mylease)(struct file_lock *, struct file_lock *);
|
|
|
|
int (*fl_change)(struct file_lock **, int);
|
|
|
|
};
|
|
|
|
|
|
|
|
/* that will die - we need it for nfs_lock_info */
|
|
|
|
#include <linux/nfs_fs_i.h>
|
|
|
|
|
|
|
|
struct file_lock {
|
|
|
|
struct file_lock *fl_next; /* singly linked list for this inode */
|
|
|
|
struct list_head fl_link; /* doubly linked list of all locks */
|
|
|
|
struct list_head fl_block; /* circular list of blocked processes */
|
|
|
|
fl_owner_t fl_owner;
|
|
|
|
unsigned int fl_pid;
|
|
|
|
wait_queue_head_t fl_wait;
|
|
|
|
struct file *fl_file;
|
|
|
|
unsigned char fl_flags;
|
|
|
|
unsigned char fl_type;
|
|
|
|
loff_t fl_start;
|
|
|
|
loff_t fl_end;
|
|
|
|
|
|
|
|
struct fasync_struct * fl_fasync; /* for lease break notifications */
|
|
|
|
unsigned long fl_break_time; /* for nonblocking lease breaks */
|
|
|
|
|
|
|
|
struct file_lock_operations *fl_ops; /* Callbacks for filesystems */
|
|
|
|
struct lock_manager_operations *fl_lmops; /* Callbacks for lockmanagers */
|
|
|
|
union {
|
|
|
|
struct nfs_lock_info nfs_fl;
|
2005-06-22 17:16:32 +00:00
|
|
|
struct nfs4_lock_info nfs4_fl;
|
2007-07-16 06:40:12 +00:00
|
|
|
struct {
|
|
|
|
struct list_head link; /* link in AFS vnode's pending_locks list */
|
|
|
|
int state; /* state of grant or error if -ve */
|
|
|
|
} afs;
|
2005-04-16 22:20:36 +00:00
|
|
|
} fl_u;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* The following constant reflects the upper bound of the file/locking space */
|
|
|
|
#ifndef OFFSET_MAX
|
|
|
|
#define INT_LIMIT(x) (~((x)1 << (sizeof(x)*8 - 1)))
|
|
|
|
#define OFFSET_MAX INT_LIMIT(loff_t)
|
|
|
|
#define OFFT_OFFSET_MAX INT_LIMIT(off_t)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include <linux/fcntl.h>
|
|
|
|
|
|
|
|
extern int fcntl_getlk(struct file *, struct flock __user *);
|
[PATCH] stale POSIX lock handling
I believe that there is a problem with the handling of POSIX locks, which
the attached patch should address.
The problem appears to be a race between fcntl(2) and close(2). A
multithreaded application could close a file descriptor at the same time as
it is trying to acquire a lock using the same file descriptor. I would
suggest that that multithreaded application is not providing the proper
synchronization for itself, but the OS should still behave correctly.
SUS3 (Single UNIX Specification Version 3, read: POSIX) indicates that when
a file descriptor is closed, that all POSIX locks on the file, owned by the
process which closed the file descriptor, should be released.
The trick here is when those locks are released. The current code releases
all locks which exist when close is processing, but any locks in progress
are handled when the last reference to the open file is released.
There are three cases to consider.
One is the simple case, a multithreaded (mt) process has a file open and
races to close it and acquire a lock on it. In this case, the close will
release one reference to the open file and when the fcntl is done, it will
release the other reference. For this situation, no locks should exist on
the file when both the close and fcntl operations are done. The current
system will handle this case because the last reference to the open file is
being released.
The second case is when the mt process has dup(2)'d the file descriptor.
The close will release one reference to the file and the fcntl, when done,
will release another, but there will still be at least one more reference
to the open file. One could argue that the existence of a lock on the file
after the close has completed is okay, because it was acquired after the
close operation and there is still a way for the application to release the
lock on the file, using an existing file descriptor.
The third case is when the mt process has forked, after opening the file
and either before or after becoming an mt process. In this case, each
process would hold a reference to the open file. For each process, this
degenerates to first case above. However, the lock continues to exist
until both processes have released their references to the open file. This
lock could block other lock requests.
The changes to release the lock when the last reference to the open file
aren't quite right because they would allow the lock to exist as long as
there was a reference to the open file. This is too long.
The new proposed solution is to add support in the fcntl code path to
detect a race with close and then to release the lock which was just
acquired when such as race is detected. This causes locks to be released
in a timely fashion and for the system to conform to the POSIX semantic
specification.
This was tested by instrumenting a kernel to detect the handling locks and
then running a program which generates case #3 above. A dangling lock
could be reliably generated. When the changes to detect the close/fcntl
race were added, a dangling lock could no longer be generated.
Cc: Matthew Wilcox <willy@debian.org>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-27 18:45:09 +00:00
|
|
|
extern int fcntl_setlk(unsigned int, struct file *, unsigned int,
|
|
|
|
struct flock __user *);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
#if BITS_PER_LONG == 32
|
|
|
|
extern int fcntl_getlk64(struct file *, struct flock64 __user *);
|
[PATCH] stale POSIX lock handling
I believe that there is a problem with the handling of POSIX locks, which
the attached patch should address.
The problem appears to be a race between fcntl(2) and close(2). A
multithreaded application could close a file descriptor at the same time as
it is trying to acquire a lock using the same file descriptor. I would
suggest that that multithreaded application is not providing the proper
synchronization for itself, but the OS should still behave correctly.
SUS3 (Single UNIX Specification Version 3, read: POSIX) indicates that when
a file descriptor is closed, that all POSIX locks on the file, owned by the
process which closed the file descriptor, should be released.
The trick here is when those locks are released. The current code releases
all locks which exist when close is processing, but any locks in progress
are handled when the last reference to the open file is released.
There are three cases to consider.
One is the simple case, a multithreaded (mt) process has a file open and
races to close it and acquire a lock on it. In this case, the close will
release one reference to the open file and when the fcntl is done, it will
release the other reference. For this situation, no locks should exist on
the file when both the close and fcntl operations are done. The current
system will handle this case because the last reference to the open file is
being released.
The second case is when the mt process has dup(2)'d the file descriptor.
The close will release one reference to the file and the fcntl, when done,
will release another, but there will still be at least one more reference
to the open file. One could argue that the existence of a lock on the file
after the close has completed is okay, because it was acquired after the
close operation and there is still a way for the application to release the
lock on the file, using an existing file descriptor.
The third case is when the mt process has forked, after opening the file
and either before or after becoming an mt process. In this case, each
process would hold a reference to the open file. For each process, this
degenerates to first case above. However, the lock continues to exist
until both processes have released their references to the open file. This
lock could block other lock requests.
The changes to release the lock when the last reference to the open file
aren't quite right because they would allow the lock to exist as long as
there was a reference to the open file. This is too long.
The new proposed solution is to add support in the fcntl code path to
detect a race with close and then to release the lock which was just
acquired when such as race is detected. This causes locks to be released
in a timely fashion and for the system to conform to the POSIX semantic
specification.
This was tested by instrumenting a kernel to detect the handling locks and
then running a program which generates case #3 above. A dangling lock
could be reliably generated. When the changes to detect the close/fcntl
race were added, a dangling lock could no longer be generated.
Cc: Matthew Wilcox <willy@debian.org>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-27 18:45:09 +00:00
|
|
|
extern int fcntl_setlk64(unsigned int, struct file *, unsigned int,
|
|
|
|
struct flock64 __user *);
|
2005-04-16 22:20:36 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
extern void send_sigio(struct fown_struct *fown, int fd, int band);
|
|
|
|
extern int fcntl_setlease(unsigned int fd, struct file *filp, long arg);
|
|
|
|
extern int fcntl_getlease(struct file *filp);
|
|
|
|
|
2006-03-31 10:30:42 +00:00
|
|
|
/* fs/sync.c */
|
2007-03-01 19:01:55 +00:00
|
|
|
extern int do_sync_mapping_range(struct address_space *mapping, loff_t offset,
|
|
|
|
loff_t endbyte, unsigned int flags);
|
2006-03-31 10:30:42 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* fs/locks.c */
|
|
|
|
extern void locks_init_lock(struct file_lock *);
|
|
|
|
extern void locks_copy_lock(struct file_lock *, struct file_lock *);
|
|
|
|
extern void locks_remove_posix(struct file *, fl_owner_t);
|
|
|
|
extern void locks_remove_flock(struct file *);
|
2007-05-11 20:09:32 +00:00
|
|
|
extern void posix_test_lock(struct file *, struct file_lock *);
|
2007-01-18 21:15:35 +00:00
|
|
|
extern int posix_lock_file(struct file *, struct file_lock *, struct file_lock *);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern int posix_lock_file_wait(struct file *, struct file_lock *);
|
2006-01-03 08:55:46 +00:00
|
|
|
extern int posix_unblock_lock(struct file *, struct file_lock *);
|
2007-02-21 05:58:50 +00:00
|
|
|
extern int vfs_test_lock(struct file *, struct file_lock *);
|
2007-01-18 21:15:35 +00:00
|
|
|
extern int vfs_lock_file(struct file *, unsigned int, struct file_lock *, struct file_lock *);
|
2007-01-18 22:52:58 +00:00
|
|
|
extern int vfs_cancel_lock(struct file *filp, struct file_lock *fl);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern int flock_lock_file_wait(struct file *filp, struct file_lock *fl);
|
|
|
|
extern int __break_lease(struct inode *inode, unsigned int flags);
|
|
|
|
extern void lease_get_mtime(struct inode *, struct timespec *time);
|
2007-07-31 07:39:22 +00:00
|
|
|
extern int generic_setlease(struct file *, long, struct file_lock **);
|
2007-06-07 21:09:49 +00:00
|
|
|
extern int vfs_setlease(struct file *, long, struct file_lock **);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern int lease_modify(struct file_lock **, int);
|
|
|
|
extern int lock_may_read(struct inode *, loff_t start, unsigned long count);
|
|
|
|
extern int lock_may_write(struct inode *, loff_t start, unsigned long count);
|
2007-10-01 21:41:15 +00:00
|
|
|
extern struct seq_operations locks_seq_operations;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
struct fasync_struct {
|
|
|
|
int magic;
|
|
|
|
int fa_fd;
|
|
|
|
struct fasync_struct *fa_next; /* singly linked list */
|
|
|
|
struct file *fa_file;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define FASYNC_MAGIC 0x4601
|
|
|
|
|
|
|
|
/* SMP safe fasync helpers: */
|
|
|
|
extern int fasync_helper(int, struct file *, int, struct fasync_struct **);
|
|
|
|
/* can be called from interrupts */
|
|
|
|
extern void kill_fasync(struct fasync_struct **, int, int);
|
|
|
|
/* only for net: no internal synchronization */
|
|
|
|
extern void __kill_fasync(struct fasync_struct *, int, int);
|
|
|
|
|
2006-10-02 09:17:15 +00:00
|
|
|
extern int __f_setown(struct file *filp, struct pid *, enum pid_type, int force);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern int f_setown(struct file *filp, unsigned long arg, int force);
|
|
|
|
extern void f_delown(struct file *filp);
|
2006-10-02 09:17:15 +00:00
|
|
|
extern pid_t f_getown(struct file *filp);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern int send_sigurg(struct fown_struct *fown);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Umount options
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */
|
|
|
|
#define MNT_DETACH 0x00000002 /* Just detach from the tree */
|
|
|
|
#define MNT_EXPIRE 0x00000004 /* Mark for expiry */
|
|
|
|
|
|
|
|
extern struct list_head super_blocks;
|
|
|
|
extern spinlock_t sb_lock;
|
|
|
|
|
|
|
|
#define sb_entry(list) list_entry((list), struct super_block, s_list)
|
|
|
|
#define S_BIAS (1<<30)
|
|
|
|
struct super_block {
|
|
|
|
struct list_head s_list; /* Keep this first */
|
|
|
|
dev_t s_dev; /* search index; _not_ kdev_t */
|
|
|
|
unsigned long s_blocksize;
|
|
|
|
unsigned char s_blocksize_bits;
|
|
|
|
unsigned char s_dirt;
|
|
|
|
unsigned long long s_maxbytes; /* Max file size */
|
|
|
|
struct file_system_type *s_type;
|
2007-02-12 08:55:41 +00:00
|
|
|
const struct super_operations *s_op;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct dquot_operations *dq_op;
|
|
|
|
struct quotactl_ops *s_qcop;
|
|
|
|
struct export_operations *s_export_op;
|
|
|
|
unsigned long s_flags;
|
|
|
|
unsigned long s_magic;
|
|
|
|
struct dentry *s_root;
|
|
|
|
struct rw_semaphore s_umount;
|
2006-01-09 23:59:25 +00:00
|
|
|
struct mutex s_lock;
|
2005-04-16 22:20:36 +00:00
|
|
|
int s_count;
|
|
|
|
int s_syncing;
|
|
|
|
int s_need_sync_fs;
|
|
|
|
atomic_t s_active;
|
[PATCH] fs.h: ifdef security fields
[assuming BSD security levels are deleted]
The only user of i_security, f_security, s_security fields is SELinux,
however, quite a few security modules are trying to get into kernel.
So, wrap them under CONFIG_SECURITY. Adding config option for each
security field is likely an overkill.
Following Stephen Smalley's suggestion, i_security initialization is
moved to security_inode_alloc() to not clutter core code with ifdefs
and make alloc_inode() codepath tiny little bit smaller and faster.
The user of (highly greppable) struct fown_struct::security field is
still to be found. I've checked every "fown_struct" and every "f_owner"
occurence. Additionally it's removal doesn't break i386 allmodconfig
build.
struct inode, struct file, struct super_block, struct fown_struct
become smaller.
P.S. Combined with two reiserfs inode shrinking patches sent to
linux-fsdevel, I can finally suck 12 reiserfs inodes into one page.
/proc/slabinfo
-ext2_inode_cache 388 10
+ext2_inode_cache 384 10
-inode_cache 280 14
+inode_cache 276 14
-proc_inode_cache 296 13
+proc_inode_cache 292 13
-reiser_inode_cache 336 11
+reiser_inode_cache 332 12 <=
-shmem_inode_cache 372 10
+shmem_inode_cache 368 10
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 09:00:01 +00:00
|
|
|
#ifdef CONFIG_SECURITY
|
2005-04-16 22:20:36 +00:00
|
|
|
void *s_security;
|
[PATCH] fs.h: ifdef security fields
[assuming BSD security levels are deleted]
The only user of i_security, f_security, s_security fields is SELinux,
however, quite a few security modules are trying to get into kernel.
So, wrap them under CONFIG_SECURITY. Adding config option for each
security field is likely an overkill.
Following Stephen Smalley's suggestion, i_security initialization is
moved to security_inode_alloc() to not clutter core code with ifdefs
and make alloc_inode() codepath tiny little bit smaller and faster.
The user of (highly greppable) struct fown_struct::security field is
still to be found. I've checked every "fown_struct" and every "f_owner"
occurence. Additionally it's removal doesn't break i386 allmodconfig
build.
struct inode, struct file, struct super_block, struct fown_struct
become smaller.
P.S. Combined with two reiserfs inode shrinking patches sent to
linux-fsdevel, I can finally suck 12 reiserfs inodes into one page.
/proc/slabinfo
-ext2_inode_cache 388 10
+ext2_inode_cache 384 10
-inode_cache 280 14
+inode_cache 276 14
-proc_inode_cache 296 13
+proc_inode_cache 292 13
-reiser_inode_cache 336 11
+reiser_inode_cache 332 12 <=
-shmem_inode_cache 372 10
+shmem_inode_cache 368 10
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 09:00:01 +00:00
|
|
|
#endif
|
2005-04-16 22:20:36 +00:00
|
|
|
struct xattr_handler **s_xattr;
|
|
|
|
|
|
|
|
struct list_head s_inodes; /* all inodes */
|
|
|
|
struct list_head s_dirty; /* dirty inodes */
|
|
|
|
struct list_head s_io; /* parked for writeback */
|
2007-10-17 06:30:38 +00:00
|
|
|
struct list_head s_more_io; /* parked for more writeback */
|
2005-04-16 22:20:36 +00:00
|
|
|
struct hlist_head s_anon; /* anonymous dentries for (nfs) exporting */
|
|
|
|
struct list_head s_files;
|
|
|
|
|
|
|
|
struct block_device *s_bdev;
|
2007-05-11 05:51:50 +00:00
|
|
|
struct mtd_info *s_mtd;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct list_head s_instances;
|
|
|
|
struct quota_info s_dquot; /* Diskquota specific options */
|
|
|
|
|
|
|
|
int s_frozen;
|
|
|
|
wait_queue_head_t s_wait_unfrozen;
|
|
|
|
|
|
|
|
char s_id[32]; /* Informational name */
|
|
|
|
|
|
|
|
void *s_fs_info; /* Filesystem private info */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The next field is for VFS *only*. No filesystems have any business
|
|
|
|
* even looking at it. You had been warned.
|
|
|
|
*/
|
2006-03-23 11:00:33 +00:00
|
|
|
struct mutex s_vfs_rename_mutex; /* Kludge */
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2006-03-31 23:41:22 +00:00
|
|
|
/* Granularity of c/m/atime in ns.
|
2005-04-16 22:20:36 +00:00
|
|
|
Cannot be worse than a second */
|
|
|
|
u32 s_time_gran;
|
add filesystem subtype support
There's a slight problem with filesystem type representation in fuse
based filesystems.
From the kernel's view, there are just two filesystem types: fuse and
fuseblk. From the user's view there are lots of different filesystem
types. The user is not even much concerned if the filesystem is fuse based
or not. So there's a conflict of interest in how this should be
represented in fstab, mtab and /proc/mounts.
The current scheme is to encode the real filesystem type in the mount
source. So an sshfs mount looks like this:
sshfs#user@server:/ /mnt/server fuse rw,nosuid,nodev,...
This url-ish syntax works OK for sshfs and similar filesystems. However
for block device based filesystems (ntfs-3g, zfs) it doesn't work, since
the kernel expects the mount source to be a real device name.
A possibly better scheme would be to encode the real type in the type
field as "type.subtype". So fuse mounts would look like this:
/dev/hda1 /mnt/windows fuseblk.ntfs-3g rw,...
user@server:/ /mnt/server fuse.sshfs rw,nosuid,nodev,...
This patch adds the necessary code to the kernel so that this can be
correctly displayed in /proc/mounts.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 07:25:43 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Filesystem subtype. If non-empty the filesystem type field
|
|
|
|
* in /proc/mounts will be "type.subtype"
|
|
|
|
*/
|
|
|
|
char *s_subtype;
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
extern struct timespec current_fs_time(struct super_block *sb);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Snapshotting support.
|
|
|
|
*/
|
|
|
|
enum {
|
|
|
|
SB_UNFROZEN = 0,
|
|
|
|
SB_FREEZE_WRITE = 1,
|
|
|
|
SB_FREEZE_TRANS = 2,
|
|
|
|
};
|
|
|
|
|
|
|
|
#define vfs_check_frozen(sb, level) \
|
|
|
|
wait_event((sb)->s_wait_unfrozen, ((sb)->s_frozen < (level)))
|
|
|
|
|
2006-10-18 17:55:46 +00:00
|
|
|
#define get_fs_excl() atomic_inc(¤t->fs_excl)
|
|
|
|
#define put_fs_excl() atomic_dec(¤t->fs_excl)
|
|
|
|
#define has_fs_excl() atomic_read(¤t->fs_excl)
|
2005-06-27 08:55:12 +00:00
|
|
|
|
2007-07-17 09:30:08 +00:00
|
|
|
#define is_owner_or_cap(inode) \
|
|
|
|
((current->fsuid == (inode)->i_uid) || capable(CAP_FOWNER))
|
|
|
|
|
2006-10-18 17:55:46 +00:00
|
|
|
/* not quite ready to be deprecated, but... */
|
|
|
|
extern void lock_super(struct super_block *);
|
|
|
|
extern void unlock_super(struct super_block *);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* VFS helper functions..
|
|
|
|
*/
|
2005-11-09 05:35:04 +00:00
|
|
|
extern int vfs_permission(struct nameidata *, int);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern int vfs_create(struct inode *, struct dentry *, int, struct nameidata *);
|
|
|
|
extern int vfs_mkdir(struct inode *, struct dentry *, int);
|
|
|
|
extern int vfs_mknod(struct inode *, struct dentry *, int, dev_t);
|
|
|
|
extern int vfs_symlink(struct inode *, struct dentry *, const char *, int);
|
|
|
|
extern int vfs_link(struct dentry *, struct inode *, struct dentry *);
|
|
|
|
extern int vfs_rmdir(struct inode *, struct dentry *);
|
|
|
|
extern int vfs_unlink(struct inode *, struct dentry *);
|
|
|
|
extern int vfs_rename(struct inode *, struct dentry *, struct inode *, struct dentry *);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* VFS dentry helper functions.
|
|
|
|
*/
|
|
|
|
extern void dentry_unhash(struct dentry *dentry);
|
|
|
|
|
2005-11-09 05:35:04 +00:00
|
|
|
/*
|
|
|
|
* VFS file helper functions.
|
|
|
|
*/
|
|
|
|
extern int file_permission(struct file *, int);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* File types
|
|
|
|
*
|
|
|
|
* NOTE! These match bits 12..15 of stat.st_mode
|
|
|
|
* (ie "(i_mode >> 12) & 15").
|
|
|
|
*/
|
|
|
|
#define DT_UNKNOWN 0
|
|
|
|
#define DT_FIFO 1
|
|
|
|
#define DT_CHR 2
|
|
|
|
#define DT_DIR 4
|
|
|
|
#define DT_BLK 6
|
|
|
|
#define DT_REG 8
|
|
|
|
#define DT_LNK 10
|
|
|
|
#define DT_SOCK 12
|
|
|
|
#define DT_WHT 14
|
|
|
|
|
|
|
|
#define OSYNC_METADATA (1<<0)
|
|
|
|
#define OSYNC_DATA (1<<1)
|
|
|
|
#define OSYNC_INODE (1<<2)
|
|
|
|
int generic_osync_inode(struct inode *, struct address_space *, int);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is the "filldir" function type, used by readdir() to let
|
|
|
|
* the kernel specify what kind of dirent layout it wants to have.
|
|
|
|
* This allows the kernel to read directories into kernel space or
|
|
|
|
* to have different dirent layouts depending on the binary type.
|
|
|
|
*/
|
2006-10-03 08:13:46 +00:00
|
|
|
typedef int (*filldir_t)(void *, const char *, int, loff_t, u64, unsigned);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
struct block_device_operations {
|
|
|
|
int (*open) (struct inode *, struct file *);
|
|
|
|
int (*release) (struct inode *, struct file *);
|
|
|
|
int (*ioctl) (struct inode *, struct file *, unsigned, unsigned long);
|
2005-06-23 07:10:15 +00:00
|
|
|
long (*unlocked_ioctl) (struct file *, unsigned, unsigned long);
|
2005-04-16 22:20:36 +00:00
|
|
|
long (*compat_ioctl) (struct file *, unsigned, unsigned long);
|
2005-06-24 05:05:23 +00:00
|
|
|
int (*direct_access) (struct block_device *, sector_t, unsigned long *);
|
2005-04-16 22:20:36 +00:00
|
|
|
int (*media_changed) (struct gendisk *);
|
|
|
|
int (*revalidate_disk) (struct gendisk *);
|
2006-01-08 09:02:50 +00:00
|
|
|
int (*getgeo)(struct block_device *, struct hd_geometry *);
|
2005-04-16 22:20:36 +00:00
|
|
|
struct module *owner;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
2007-06-11 10:18:52 +00:00
|
|
|
* "descriptor" for what we're up to with a read.
|
2005-04-16 22:20:36 +00:00
|
|
|
* This allows us to use the same read code yet
|
|
|
|
* have multiple different users of the data that
|
|
|
|
* we read from a file.
|
|
|
|
*
|
|
|
|
* The simplest case just copies the data to user
|
|
|
|
* mode.
|
|
|
|
*/
|
|
|
|
typedef struct {
|
|
|
|
size_t written;
|
|
|
|
size_t count;
|
|
|
|
union {
|
|
|
|
char __user * buf;
|
|
|
|
void *data;
|
|
|
|
} arg;
|
|
|
|
int error;
|
|
|
|
} read_descriptor_t;
|
|
|
|
|
|
|
|
typedef int (*read_actor_t)(read_descriptor_t *, struct page *, unsigned long, unsigned long);
|
|
|
|
|
|
|
|
/* These macros are for out of kernel modules to test that
|
|
|
|
* the kernel supports the unlocked_ioctl and compat_ioctl
|
|
|
|
* fields in struct file_operations. */
|
|
|
|
#define HAVE_COMPAT_IOCTL 1
|
|
|
|
#define HAVE_UNLOCKED_IOCTL 1
|
|
|
|
|
|
|
|
/*
|
|
|
|
* NOTE:
|
|
|
|
* read, write, poll, fsync, readv, writev, unlocked_ioctl and compat_ioctl
|
|
|
|
* can be called without the big kernel lock held in all filesystems.
|
|
|
|
*/
|
|
|
|
struct file_operations {
|
|
|
|
struct module *owner;
|
|
|
|
loff_t (*llseek) (struct file *, loff_t, int);
|
|
|
|
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
|
|
|
|
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
|
2006-10-01 06:28:46 +00:00
|
|
|
ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
|
|
|
|
ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
|
2005-04-16 22:20:36 +00:00
|
|
|
int (*readdir) (struct file *, void *, filldir_t);
|
|
|
|
unsigned int (*poll) (struct file *, struct poll_table_struct *);
|
|
|
|
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
|
|
|
|
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
|
|
|
|
long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
|
|
|
|
int (*mmap) (struct file *, struct vm_area_struct *);
|
|
|
|
int (*open) (struct inode *, struct file *);
|
2006-06-23 09:05:12 +00:00
|
|
|
int (*flush) (struct file *, fl_owner_t id);
|
2005-04-16 22:20:36 +00:00
|
|
|
int (*release) (struct inode *, struct file *);
|
|
|
|
int (*fsync) (struct file *, struct dentry *, int datasync);
|
|
|
|
int (*aio_fsync) (struct kiocb *, int datasync);
|
|
|
|
int (*fasync) (int, struct file *, int);
|
|
|
|
int (*lock) (struct file *, int, struct file_lock *);
|
|
|
|
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
|
|
|
|
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
|
|
|
|
int (*check_flags)(int);
|
|
|
|
int (*dir_notify)(struct file *filp, unsigned long arg);
|
|
|
|
int (*flock) (struct file *, int, struct file_lock *);
|
2006-04-11 12:57:50 +00:00
|
|
|
ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
|
|
|
|
ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
|
2006-11-14 20:51:40 +00:00
|
|
|
int (*setlease)(struct file *, long, struct file_lock **);
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
struct inode_operations {
|
|
|
|
int (*create) (struct inode *,struct dentry *,int, struct nameidata *);
|
|
|
|
struct dentry * (*lookup) (struct inode *,struct dentry *, struct nameidata *);
|
|
|
|
int (*link) (struct dentry *,struct inode *,struct dentry *);
|
|
|
|
int (*unlink) (struct inode *,struct dentry *);
|
|
|
|
int (*symlink) (struct inode *,struct dentry *,const char *);
|
|
|
|
int (*mkdir) (struct inode *,struct dentry *,int);
|
|
|
|
int (*rmdir) (struct inode *,struct dentry *);
|
|
|
|
int (*mknod) (struct inode *,struct dentry *,int,dev_t);
|
|
|
|
int (*rename) (struct inode *, struct dentry *,
|
|
|
|
struct inode *, struct dentry *);
|
|
|
|
int (*readlink) (struct dentry *, char __user *,int);
|
2005-08-20 01:02:56 +00:00
|
|
|
void * (*follow_link) (struct dentry *, struct nameidata *);
|
|
|
|
void (*put_link) (struct dentry *, struct nameidata *, void *);
|
2005-04-16 22:20:36 +00:00
|
|
|
void (*truncate) (struct inode *);
|
|
|
|
int (*permission) (struct inode *, int, struct nameidata *);
|
|
|
|
int (*setattr) (struct dentry *, struct iattr *);
|
|
|
|
int (*getattr) (struct vfsmount *mnt, struct dentry *, struct kstat *);
|
|
|
|
int (*setxattr) (struct dentry *, const char *,const void *,size_t,int);
|
|
|
|
ssize_t (*getxattr) (struct dentry *, const char *, void *, size_t);
|
|
|
|
ssize_t (*listxattr) (struct dentry *, char *, size_t);
|
|
|
|
int (*removexattr) (struct dentry *, const char *);
|
[PATCH] madvise(MADV_REMOVE): remove pages from tmpfs shm backing store
Here is the patch to implement madvise(MADV_REMOVE) - which frees up a
given range of pages & its associated backing store. Current
implementation supports only shmfs/tmpfs and other filesystems return
-ENOSYS.
"Some app allocates large tmpfs files, then when some task quits and some
client disconnect, some memory can be released. However the only way to
release tmpfs-swap is to MADV_REMOVE". - Andrea Arcangeli
Databases want to use this feature to drop a section of their bufferpool
(shared memory segments) - without writing back to disk/swap space.
This feature is also useful for supporting hot-plug memory on UML.
Concerns raised by Andrew Morton:
- "We have no plan for holepunching! If we _do_ have such a plan (or
might in the future) then what would the API look like? I think
sys_holepunch(fd, start, len), so we should start out with that."
- Using madvise is very weird, because people will ask "why do I need to
mmap my file before I can stick a hole in it?"
- None of the other madvise operations call into the filesystem in this
manner. A broad question is: is this capability an MM operation or a
filesytem operation? truncate, for example, is a filesystem operation
which sometimes has MM side-effects. madvise is an mm operation and with
this patch, it gains FS side-effects, only they're really, really
significant ones."
Comments:
- Andrea suggested the fs operation too but then it's more efficient to
have it as a mm operation with fs side effects, because they don't
immediatly know fd and physical offset of the range. It's possible to
fixup in userland and to use the fs operation but it's more expensive,
the vmas are already in the kernel and we can use them.
Short term plan & Future Direction:
- We seem to need this interface only for shmfs/tmpfs files in the short
term. We have to add hooks into the filesystem for correctness and
completeness. This is what this patch does.
- In the future, plan is to support both fs and mmap apis also. This
also involves (other) filesystem specific functions to be implemented.
- Current patch doesn't support VM_NONLINEAR - which can be addressed in
the future.
Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Andrea Arcangeli <andrea@suse.de>
Cc: Michael Kerrisk <mtk-manpages@gmx.net>
Cc: Ulrich Drepper <drepper@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-06 08:10:38 +00:00
|
|
|
void (*truncate_range)(struct inode *, loff_t, loff_t);
|
sys_fallocate() implementation on i386, x86_64 and powerpc
fallocate() is a new system call being proposed here which will allow
applications to preallocate space to any file(s) in a file system.
Each file system implementation that wants to use this feature will need
to support an inode operation called ->fallocate().
Applications can use this feature to avoid fragmentation to certain
level and thus get faster access speed. With preallocation, applications
also get a guarantee of space for particular file(s) - even if later the
the system becomes full.
Currently, glibc provides an interface called posix_fallocate() which
can be used for similar cause. Though this has the advantage of working
on all file systems, but it is quite slow (since it writes zeroes to
each block that has to be preallocated). Without a doubt, file systems
can do this more efficiently within the kernel, by implementing
the proposed fallocate() system call. It is expected that
posix_fallocate() will be modified to call this new system call first
and incase the kernel/filesystem does not implement it, it should fall
back to the current implementation of writing zeroes to the new blocks.
ToDos:
1. Implementation on other architectures (other than i386, x86_64,
and ppc). Patches for s390(x) and ia64 are already available from
previous posts, but it was decided that they should be added later
once fallocate is in the mainline. Hence not including those patches
in this take.
2. Changes to glibc,
a) to support fallocate() system call
b) to make posix_fallocate() and posix_fallocate64() call fallocate()
Signed-off-by: Amit Arora <aarora@in.ibm.com>
2007-07-18 01:42:44 +00:00
|
|
|
long (*fallocate)(struct inode *inode, int mode, loff_t offset,
|
|
|
|
loff_t len);
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
struct seq_file;
|
|
|
|
|
2006-10-01 06:28:49 +00:00
|
|
|
ssize_t rw_copy_check_uvector(int type, const struct iovec __user * uvector,
|
|
|
|
unsigned long nr_segs, unsigned long fast_segs,
|
|
|
|
struct iovec *fast_pointer,
|
|
|
|
struct iovec **ret_pointer);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *);
|
|
|
|
extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *);
|
|
|
|
extern ssize_t vfs_readv(struct file *, const struct iovec __user *,
|
|
|
|
unsigned long, loff_t *);
|
|
|
|
extern ssize_t vfs_writev(struct file *, const struct iovec __user *,
|
|
|
|
unsigned long, loff_t *);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* NOTE: write_inode, delete_inode, clear_inode, put_inode can be called
|
|
|
|
* without the big kernel lock held in all filesystems.
|
|
|
|
*/
|
|
|
|
struct super_operations {
|
|
|
|
struct inode *(*alloc_inode)(struct super_block *sb);
|
|
|
|
void (*destroy_inode)(struct inode *);
|
|
|
|
|
|
|
|
void (*read_inode) (struct inode *);
|
|
|
|
|
|
|
|
void (*dirty_inode) (struct inode *);
|
|
|
|
int (*write_inode) (struct inode *, int);
|
|
|
|
void (*put_inode) (struct inode *);
|
|
|
|
void (*drop_inode) (struct inode *);
|
|
|
|
void (*delete_inode) (struct inode *);
|
|
|
|
void (*put_super) (struct super_block *);
|
|
|
|
void (*write_super) (struct super_block *);
|
|
|
|
int (*sync_fs)(struct super_block *sb, int wait);
|
|
|
|
void (*write_super_lockfs) (struct super_block *);
|
|
|
|
void (*unlockfs) (struct super_block *);
|
2006-06-23 09:02:58 +00:00
|
|
|
int (*statfs) (struct dentry *, struct kstatfs *);
|
2005-04-16 22:20:36 +00:00
|
|
|
int (*remount_fs) (struct super_block *, int *, char *);
|
|
|
|
void (*clear_inode) (struct inode *);
|
2006-06-09 13:34:18 +00:00
|
|
|
void (*umount_begin) (struct vfsmount *, int);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
int (*show_options)(struct seq_file *, struct vfsmount *);
|
2006-03-20 18:44:12 +00:00
|
|
|
int (*show_stats)(struct seq_file *, struct vfsmount *);
|
2006-09-29 08:59:56 +00:00
|
|
|
#ifdef CONFIG_QUOTA
|
2005-04-16 22:20:36 +00:00
|
|
|
ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
|
|
|
|
ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
|
2006-09-29 08:59:56 +00:00
|
|
|
#endif
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
2007-10-17 06:30:44 +00:00
|
|
|
/*
|
|
|
|
* Inode state bits. Protected by inode_lock.
|
|
|
|
*
|
|
|
|
* Three bits determine the dirty state of the inode, I_DIRTY_SYNC,
|
|
|
|
* I_DIRTY_DATASYNC and I_DIRTY_PAGES.
|
|
|
|
*
|
|
|
|
* Four bits define the lifetime of an inode. Initially, inodes are I_NEW,
|
|
|
|
* until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at
|
|
|
|
* various stages of removing an inode.
|
|
|
|
*
|
|
|
|
* Two bits are used for locking and completion notification, I_LOCK and I_SYNC.
|
|
|
|
*
|
|
|
|
* I_DIRTY_SYNC Inode itself is dirty.
|
|
|
|
* I_DIRTY_DATASYNC Data-related inode changes pending
|
|
|
|
* I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean.
|
|
|
|
* I_NEW get_new_inode() sets i_state to I_LOCK|I_NEW. Both
|
|
|
|
* are cleared by unlock_new_inode(), called from iget().
|
|
|
|
* I_WILL_FREE Must be set when calling write_inode_now() if i_count
|
|
|
|
* is zero. I_FREEING must be set when I_WILL_FREE is
|
|
|
|
* cleared.
|
|
|
|
* I_FREEING Set when inode is about to be freed but still has dirty
|
|
|
|
* pages or buffers attached or the inode itself is still
|
|
|
|
* dirty.
|
|
|
|
* I_CLEAR Set by clear_inode(). In this state the inode is clean
|
|
|
|
* and can be destroyed.
|
|
|
|
*
|
|
|
|
* Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are
|
|
|
|
* prohibited for many purposes. iget() must wait for
|
|
|
|
* the inode to be completely released, then create it
|
|
|
|
* anew. Other functions will just ignore such inodes,
|
|
|
|
* if appropriate. I_LOCK is used for waiting.
|
|
|
|
*
|
|
|
|
* I_LOCK Serves as both a mutex and completion notification.
|
|
|
|
* New inodes set I_LOCK. If two processes both create
|
|
|
|
* the same inode, one of them will release its inode and
|
|
|
|
* wait for I_LOCK to be released before returning.
|
|
|
|
* Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can
|
|
|
|
* also cause waiting on I_LOCK, without I_LOCK actually
|
|
|
|
* being set. find_inode() uses this to prevent returning
|
|
|
|
* nearly-dead inodes.
|
|
|
|
* I_SYNC Similar to I_LOCK, but limited in scope to writeback
|
|
|
|
* of inode dirty data. Having a seperate lock for this
|
|
|
|
* purpose reduces latency and prevents some filesystem-
|
|
|
|
* specific deadlocks.
|
|
|
|
*
|
|
|
|
* Q: Why does I_DIRTY_DATASYNC exist? It appears as if it could be replaced
|
|
|
|
* by (I_DIRTY_SYNC|I_DIRTY_PAGES).
|
|
|
|
* Q: What is the difference between I_WILL_FREE and I_FREEING?
|
|
|
|
* Q: igrab() only checks on (I_FREEING|I_WILL_FREE). Should it also check on
|
|
|
|
* I_CLEAR? If not, why?
|
|
|
|
*/
|
|
|
|
#define I_DIRTY_SYNC 1
|
|
|
|
#define I_DIRTY_DATASYNC 2
|
|
|
|
#define I_DIRTY_PAGES 4
|
|
|
|
#define I_NEW 8
|
|
|
|
#define I_WILL_FREE 16
|
|
|
|
#define I_FREEING 32
|
|
|
|
#define I_CLEAR 64
|
|
|
|
#define __I_LOCK 7
|
2005-04-16 22:20:36 +00:00
|
|
|
#define I_LOCK (1 << __I_LOCK)
|
2007-10-17 06:30:44 +00:00
|
|
|
#define __I_SYNC 8
|
|
|
|
#define I_SYNC (1 << __I_SYNC)
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
#define I_DIRTY (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_PAGES)
|
|
|
|
|
|
|
|
extern void __mark_inode_dirty(struct inode *, int);
|
|
|
|
static inline void mark_inode_dirty(struct inode *inode)
|
|
|
|
{
|
|
|
|
__mark_inode_dirty(inode, I_DIRTY);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void mark_inode_dirty_sync(struct inode *inode)
|
|
|
|
{
|
|
|
|
__mark_inode_dirty(inode, I_DIRTY_SYNC);
|
|
|
|
}
|
|
|
|
|
2007-06-24 00:16:42 +00:00
|
|
|
/**
|
|
|
|
* inc_nlink - directly increment an inode's link count
|
|
|
|
* @inode: inode
|
|
|
|
*
|
|
|
|
* This is a low-level filesystem helper to replace any
|
|
|
|
* direct filesystem manipulation of i_nlink. Currently,
|
|
|
|
* it is only here for parity with dec_nlink().
|
|
|
|
*/
|
2006-10-01 06:29:04 +00:00
|
|
|
static inline void inc_nlink(struct inode *inode)
|
2006-03-23 11:00:51 +00:00
|
|
|
{
|
|
|
|
inode->i_nlink++;
|
2006-10-01 06:29:04 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void inode_inc_link_count(struct inode *inode)
|
|
|
|
{
|
|
|
|
inc_nlink(inode);
|
2006-03-23 11:00:51 +00:00
|
|
|
mark_inode_dirty(inode);
|
|
|
|
}
|
|
|
|
|
2007-06-24 00:16:42 +00:00
|
|
|
/**
|
|
|
|
* drop_nlink - directly drop an inode's link count
|
|
|
|
* @inode: inode
|
|
|
|
*
|
|
|
|
* This is a low-level filesystem helper to replace any
|
|
|
|
* direct filesystem manipulation of i_nlink. In cases
|
|
|
|
* where we are attempting to track writes to the
|
|
|
|
* filesystem, a decrement to zero means an imminent
|
|
|
|
* write when the file is truncated and actually unlinked
|
|
|
|
* on the filesystem.
|
|
|
|
*/
|
2006-10-01 06:29:03 +00:00
|
|
|
static inline void drop_nlink(struct inode *inode)
|
2006-03-23 11:00:51 +00:00
|
|
|
{
|
|
|
|
inode->i_nlink--;
|
2006-10-01 06:29:03 +00:00
|
|
|
}
|
|
|
|
|
2007-06-24 00:16:42 +00:00
|
|
|
/**
|
|
|
|
* clear_nlink - directly zero an inode's link count
|
|
|
|
* @inode: inode
|
|
|
|
*
|
|
|
|
* This is a low-level filesystem helper to replace any
|
|
|
|
* direct filesystem manipulation of i_nlink. See
|
|
|
|
* drop_nlink() for why we care about i_nlink hitting zero.
|
|
|
|
*/
|
2006-10-01 06:29:06 +00:00
|
|
|
static inline void clear_nlink(struct inode *inode)
|
|
|
|
{
|
|
|
|
inode->i_nlink = 0;
|
|
|
|
}
|
|
|
|
|
2006-10-01 06:29:03 +00:00
|
|
|
static inline void inode_dec_link_count(struct inode *inode)
|
|
|
|
{
|
|
|
|
drop_nlink(inode);
|
2006-03-23 11:00:51 +00:00
|
|
|
mark_inode_dirty(inode);
|
|
|
|
}
|
|
|
|
|
2006-01-10 04:52:03 +00:00
|
|
|
extern void touch_atime(struct vfsmount *mnt, struct dentry *dentry);
|
2005-04-16 22:20:36 +00:00
|
|
|
static inline void file_accessed(struct file *file)
|
|
|
|
{
|
|
|
|
if (!(file->f_flags & O_NOATIME))
|
2006-12-08 10:36:35 +00:00
|
|
|
touch_atime(file->f_path.mnt, file->f_path.dentry);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int sync_inode(struct inode *inode, struct writeback_control *wbc);
|
|
|
|
|
|
|
|
struct file_system_type {
|
|
|
|
const char *name;
|
|
|
|
int fs_flags;
|
[PATCH] VFS: Permit filesystem to override root dentry on mount
Extend the get_sb() filesystem operation to take an extra argument that
permits the VFS to pass in the target vfsmount that defines the mountpoint.
The filesystem is then required to manually set the superblock and root dentry
pointers. For most filesystems, this should be done with simple_set_mnt()
which will set the superblock pointer and then set the root dentry to the
superblock's s_root (as per the old default behaviour).
The get_sb() op now returns an integer as there's now no need to return the
superblock pointer.
This patch permits a superblock to be implicitly shared amongst several mount
points, such as can be done with NFS to avoid potential inode aliasing. In
such a case, simple_set_mnt() would not be called, and instead the mnt_root
and mnt_sb would be set directly.
The patch also makes the following changes:
(*) the get_sb_*() convenience functions in the core kernel now take a vfsmount
pointer argument and return an integer, so most filesystems have to change
very little.
(*) If one of the convenience function is not used, then get_sb() should
normally call simple_set_mnt() to instantiate the vfsmount. This will
always return 0, and so can be tail-called from get_sb().
(*) generic_shutdown_super() now calls shrink_dcache_sb() to clean up the
dcache upon superblock destruction rather than shrink_dcache_anon().
This is required because the superblock may now have multiple trees that
aren't actually bound to s_root, but that still need to be cleaned up. The
currently called functions assume that the whole tree is rooted at s_root,
and that anonymous dentries are not the roots of trees which results in
dentries being left unculled.
However, with the way NFS superblock sharing are currently set to be
implemented, these assumptions are violated: the root of the filesystem is
simply a dummy dentry and inode (the real inode for '/' may well be
inaccessible), and all the vfsmounts are rooted on anonymous[*] dentries
with child trees.
[*] Anonymous until discovered from another tree.
(*) The documentation has been adjusted, including the additional bit of
changing ext2_* into foo_* in the documentation.
[akpm@osdl.org: convert ipath_fs, do other stuff]
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Nathan Scott <nathans@sgi.com>
Cc: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:02:57 +00:00
|
|
|
int (*get_sb) (struct file_system_type *, int,
|
|
|
|
const char *, void *, struct vfsmount *);
|
2005-04-16 22:20:36 +00:00
|
|
|
void (*kill_sb) (struct super_block *);
|
|
|
|
struct module *owner;
|
|
|
|
struct file_system_type * next;
|
|
|
|
struct list_head fs_supers;
|
2007-10-15 12:51:31 +00:00
|
|
|
|
2006-07-03 07:25:27 +00:00
|
|
|
struct lock_class_key s_lock_key;
|
2006-07-03 07:25:28 +00:00
|
|
|
struct lock_class_key s_umount_key;
|
2007-10-15 12:51:31 +00:00
|
|
|
|
|
|
|
struct lock_class_key i_lock_key;
|
|
|
|
struct lock_class_key i_mutex_key;
|
2007-10-13 23:38:33 +00:00
|
|
|
struct lock_class_key i_mutex_dir_key;
|
2007-10-15 12:51:31 +00:00
|
|
|
struct lock_class_key i_alloc_sem_key;
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
[PATCH] VFS: Permit filesystem to override root dentry on mount
Extend the get_sb() filesystem operation to take an extra argument that
permits the VFS to pass in the target vfsmount that defines the mountpoint.
The filesystem is then required to manually set the superblock and root dentry
pointers. For most filesystems, this should be done with simple_set_mnt()
which will set the superblock pointer and then set the root dentry to the
superblock's s_root (as per the old default behaviour).
The get_sb() op now returns an integer as there's now no need to return the
superblock pointer.
This patch permits a superblock to be implicitly shared amongst several mount
points, such as can be done with NFS to avoid potential inode aliasing. In
such a case, simple_set_mnt() would not be called, and instead the mnt_root
and mnt_sb would be set directly.
The patch also makes the following changes:
(*) the get_sb_*() convenience functions in the core kernel now take a vfsmount
pointer argument and return an integer, so most filesystems have to change
very little.
(*) If one of the convenience function is not used, then get_sb() should
normally call simple_set_mnt() to instantiate the vfsmount. This will
always return 0, and so can be tail-called from get_sb().
(*) generic_shutdown_super() now calls shrink_dcache_sb() to clean up the
dcache upon superblock destruction rather than shrink_dcache_anon().
This is required because the superblock may now have multiple trees that
aren't actually bound to s_root, but that still need to be cleaned up. The
currently called functions assume that the whole tree is rooted at s_root,
and that anonymous dentries are not the roots of trees which results in
dentries being left unculled.
However, with the way NFS superblock sharing are currently set to be
implemented, these assumptions are violated: the root of the filesystem is
simply a dummy dentry and inode (the real inode for '/' may well be
inaccessible), and all the vfsmounts are rooted on anonymous[*] dentries
with child trees.
[*] Anonymous until discovered from another tree.
(*) The documentation has been adjusted, including the additional bit of
changing ext2_* into foo_* in the documentation.
[akpm@osdl.org: convert ipath_fs, do other stuff]
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Nathan Scott <nathans@sgi.com>
Cc: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:02:57 +00:00
|
|
|
extern int get_sb_bdev(struct file_system_type *fs_type,
|
2005-04-16 22:20:36 +00:00
|
|
|
int flags, const char *dev_name, void *data,
|
[PATCH] VFS: Permit filesystem to override root dentry on mount
Extend the get_sb() filesystem operation to take an extra argument that
permits the VFS to pass in the target vfsmount that defines the mountpoint.
The filesystem is then required to manually set the superblock and root dentry
pointers. For most filesystems, this should be done with simple_set_mnt()
which will set the superblock pointer and then set the root dentry to the
superblock's s_root (as per the old default behaviour).
The get_sb() op now returns an integer as there's now no need to return the
superblock pointer.
This patch permits a superblock to be implicitly shared amongst several mount
points, such as can be done with NFS to avoid potential inode aliasing. In
such a case, simple_set_mnt() would not be called, and instead the mnt_root
and mnt_sb would be set directly.
The patch also makes the following changes:
(*) the get_sb_*() convenience functions in the core kernel now take a vfsmount
pointer argument and return an integer, so most filesystems have to change
very little.
(*) If one of the convenience function is not used, then get_sb() should
normally call simple_set_mnt() to instantiate the vfsmount. This will
always return 0, and so can be tail-called from get_sb().
(*) generic_shutdown_super() now calls shrink_dcache_sb() to clean up the
dcache upon superblock destruction rather than shrink_dcache_anon().
This is required because the superblock may now have multiple trees that
aren't actually bound to s_root, but that still need to be cleaned up. The
currently called functions assume that the whole tree is rooted at s_root,
and that anonymous dentries are not the roots of trees which results in
dentries being left unculled.
However, with the way NFS superblock sharing are currently set to be
implemented, these assumptions are violated: the root of the filesystem is
simply a dummy dentry and inode (the real inode for '/' may well be
inaccessible), and all the vfsmounts are rooted on anonymous[*] dentries
with child trees.
[*] Anonymous until discovered from another tree.
(*) The documentation has been adjusted, including the additional bit of
changing ext2_* into foo_* in the documentation.
[akpm@osdl.org: convert ipath_fs, do other stuff]
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Nathan Scott <nathans@sgi.com>
Cc: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:02:57 +00:00
|
|
|
int (*fill_super)(struct super_block *, void *, int),
|
|
|
|
struct vfsmount *mnt);
|
|
|
|
extern int get_sb_single(struct file_system_type *fs_type,
|
2005-04-16 22:20:36 +00:00
|
|
|
int flags, void *data,
|
[PATCH] VFS: Permit filesystem to override root dentry on mount
Extend the get_sb() filesystem operation to take an extra argument that
permits the VFS to pass in the target vfsmount that defines the mountpoint.
The filesystem is then required to manually set the superblock and root dentry
pointers. For most filesystems, this should be done with simple_set_mnt()
which will set the superblock pointer and then set the root dentry to the
superblock's s_root (as per the old default behaviour).
The get_sb() op now returns an integer as there's now no need to return the
superblock pointer.
This patch permits a superblock to be implicitly shared amongst several mount
points, such as can be done with NFS to avoid potential inode aliasing. In
such a case, simple_set_mnt() would not be called, and instead the mnt_root
and mnt_sb would be set directly.
The patch also makes the following changes:
(*) the get_sb_*() convenience functions in the core kernel now take a vfsmount
pointer argument and return an integer, so most filesystems have to change
very little.
(*) If one of the convenience function is not used, then get_sb() should
normally call simple_set_mnt() to instantiate the vfsmount. This will
always return 0, and so can be tail-called from get_sb().
(*) generic_shutdown_super() now calls shrink_dcache_sb() to clean up the
dcache upon superblock destruction rather than shrink_dcache_anon().
This is required because the superblock may now have multiple trees that
aren't actually bound to s_root, but that still need to be cleaned up. The
currently called functions assume that the whole tree is rooted at s_root,
and that anonymous dentries are not the roots of trees which results in
dentries being left unculled.
However, with the way NFS superblock sharing are currently set to be
implemented, these assumptions are violated: the root of the filesystem is
simply a dummy dentry and inode (the real inode for '/' may well be
inaccessible), and all the vfsmounts are rooted on anonymous[*] dentries
with child trees.
[*] Anonymous until discovered from another tree.
(*) The documentation has been adjusted, including the additional bit of
changing ext2_* into foo_* in the documentation.
[akpm@osdl.org: convert ipath_fs, do other stuff]
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Nathan Scott <nathans@sgi.com>
Cc: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:02:57 +00:00
|
|
|
int (*fill_super)(struct super_block *, void *, int),
|
|
|
|
struct vfsmount *mnt);
|
|
|
|
extern int get_sb_nodev(struct file_system_type *fs_type,
|
2005-04-16 22:20:36 +00:00
|
|
|
int flags, void *data,
|
[PATCH] VFS: Permit filesystem to override root dentry on mount
Extend the get_sb() filesystem operation to take an extra argument that
permits the VFS to pass in the target vfsmount that defines the mountpoint.
The filesystem is then required to manually set the superblock and root dentry
pointers. For most filesystems, this should be done with simple_set_mnt()
which will set the superblock pointer and then set the root dentry to the
superblock's s_root (as per the old default behaviour).
The get_sb() op now returns an integer as there's now no need to return the
superblock pointer.
This patch permits a superblock to be implicitly shared amongst several mount
points, such as can be done with NFS to avoid potential inode aliasing. In
such a case, simple_set_mnt() would not be called, and instead the mnt_root
and mnt_sb would be set directly.
The patch also makes the following changes:
(*) the get_sb_*() convenience functions in the core kernel now take a vfsmount
pointer argument and return an integer, so most filesystems have to change
very little.
(*) If one of the convenience function is not used, then get_sb() should
normally call simple_set_mnt() to instantiate the vfsmount. This will
always return 0, and so can be tail-called from get_sb().
(*) generic_shutdown_super() now calls shrink_dcache_sb() to clean up the
dcache upon superblock destruction rather than shrink_dcache_anon().
This is required because the superblock may now have multiple trees that
aren't actually bound to s_root, but that still need to be cleaned up. The
currently called functions assume that the whole tree is rooted at s_root,
and that anonymous dentries are not the roots of trees which results in
dentries being left unculled.
However, with the way NFS superblock sharing are currently set to be
implemented, these assumptions are violated: the root of the filesystem is
simply a dummy dentry and inode (the real inode for '/' may well be
inaccessible), and all the vfsmounts are rooted on anonymous[*] dentries
with child trees.
[*] Anonymous until discovered from another tree.
(*) The documentation has been adjusted, including the additional bit of
changing ext2_* into foo_* in the documentation.
[akpm@osdl.org: convert ipath_fs, do other stuff]
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Nathan Scott <nathans@sgi.com>
Cc: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:02:57 +00:00
|
|
|
int (*fill_super)(struct super_block *, void *, int),
|
|
|
|
struct vfsmount *mnt);
|
2005-04-16 22:20:36 +00:00
|
|
|
void generic_shutdown_super(struct super_block *sb);
|
|
|
|
void kill_block_super(struct super_block *sb);
|
|
|
|
void kill_anon_super(struct super_block *sb);
|
|
|
|
void kill_litter_super(struct super_block *sb);
|
|
|
|
void deactivate_super(struct super_block *sb);
|
|
|
|
int set_anon_super(struct super_block *s, void *data);
|
|
|
|
struct super_block *sget(struct file_system_type *type,
|
|
|
|
int (*test)(struct super_block *,void *),
|
|
|
|
int (*set)(struct super_block *,void *),
|
|
|
|
void *data);
|
[PATCH] VFS: Permit filesystem to override root dentry on mount
Extend the get_sb() filesystem operation to take an extra argument that
permits the VFS to pass in the target vfsmount that defines the mountpoint.
The filesystem is then required to manually set the superblock and root dentry
pointers. For most filesystems, this should be done with simple_set_mnt()
which will set the superblock pointer and then set the root dentry to the
superblock's s_root (as per the old default behaviour).
The get_sb() op now returns an integer as there's now no need to return the
superblock pointer.
This patch permits a superblock to be implicitly shared amongst several mount
points, such as can be done with NFS to avoid potential inode aliasing. In
such a case, simple_set_mnt() would not be called, and instead the mnt_root
and mnt_sb would be set directly.
The patch also makes the following changes:
(*) the get_sb_*() convenience functions in the core kernel now take a vfsmount
pointer argument and return an integer, so most filesystems have to change
very little.
(*) If one of the convenience function is not used, then get_sb() should
normally call simple_set_mnt() to instantiate the vfsmount. This will
always return 0, and so can be tail-called from get_sb().
(*) generic_shutdown_super() now calls shrink_dcache_sb() to clean up the
dcache upon superblock destruction rather than shrink_dcache_anon().
This is required because the superblock may now have multiple trees that
aren't actually bound to s_root, but that still need to be cleaned up. The
currently called functions assume that the whole tree is rooted at s_root,
and that anonymous dentries are not the roots of trees which results in
dentries being left unculled.
However, with the way NFS superblock sharing are currently set to be
implemented, these assumptions are violated: the root of the filesystem is
simply a dummy dentry and inode (the real inode for '/' may well be
inaccessible), and all the vfsmounts are rooted on anonymous[*] dentries
with child trees.
[*] Anonymous until discovered from another tree.
(*) The documentation has been adjusted, including the additional bit of
changing ext2_* into foo_* in the documentation.
[akpm@osdl.org: convert ipath_fs, do other stuff]
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Nathan Scott <nathans@sgi.com>
Cc: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:02:57 +00:00
|
|
|
extern int get_sb_pseudo(struct file_system_type *, char *,
|
2007-02-12 08:55:41 +00:00
|
|
|
const struct super_operations *ops, unsigned long,
|
[PATCH] VFS: Permit filesystem to override root dentry on mount
Extend the get_sb() filesystem operation to take an extra argument that
permits the VFS to pass in the target vfsmount that defines the mountpoint.
The filesystem is then required to manually set the superblock and root dentry
pointers. For most filesystems, this should be done with simple_set_mnt()
which will set the superblock pointer and then set the root dentry to the
superblock's s_root (as per the old default behaviour).
The get_sb() op now returns an integer as there's now no need to return the
superblock pointer.
This patch permits a superblock to be implicitly shared amongst several mount
points, such as can be done with NFS to avoid potential inode aliasing. In
such a case, simple_set_mnt() would not be called, and instead the mnt_root
and mnt_sb would be set directly.
The patch also makes the following changes:
(*) the get_sb_*() convenience functions in the core kernel now take a vfsmount
pointer argument and return an integer, so most filesystems have to change
very little.
(*) If one of the convenience function is not used, then get_sb() should
normally call simple_set_mnt() to instantiate the vfsmount. This will
always return 0, and so can be tail-called from get_sb().
(*) generic_shutdown_super() now calls shrink_dcache_sb() to clean up the
dcache upon superblock destruction rather than shrink_dcache_anon().
This is required because the superblock may now have multiple trees that
aren't actually bound to s_root, but that still need to be cleaned up. The
currently called functions assume that the whole tree is rooted at s_root,
and that anonymous dentries are not the roots of trees which results in
dentries being left unculled.
However, with the way NFS superblock sharing are currently set to be
implemented, these assumptions are violated: the root of the filesystem is
simply a dummy dentry and inode (the real inode for '/' may well be
inaccessible), and all the vfsmounts are rooted on anonymous[*] dentries
with child trees.
[*] Anonymous until discovered from another tree.
(*) The documentation has been adjusted, including the additional bit of
changing ext2_* into foo_* in the documentation.
[akpm@osdl.org: convert ipath_fs, do other stuff]
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Nathan Scott <nathans@sgi.com>
Cc: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:02:57 +00:00
|
|
|
struct vfsmount *mnt);
|
|
|
|
extern int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb);
|
2005-04-16 22:20:36 +00:00
|
|
|
int __put_super(struct super_block *sb);
|
|
|
|
int __put_super_and_need_restart(struct super_block *sb);
|
|
|
|
void unnamed_dev_init(void);
|
|
|
|
|
|
|
|
/* Alas, no aliases. Too much hassle with bringing module.h everywhere */
|
|
|
|
#define fops_get(fops) \
|
|
|
|
(((fops) && try_module_get((fops)->owner) ? (fops) : NULL))
|
|
|
|
#define fops_put(fops) \
|
|
|
|
do { if (fops) module_put((fops)->owner); } while(0)
|
|
|
|
|
|
|
|
extern int register_filesystem(struct file_system_type *);
|
|
|
|
extern int unregister_filesystem(struct file_system_type *);
|
|
|
|
extern struct vfsmount *kern_mount(struct file_system_type *);
|
|
|
|
extern int may_umount_tree(struct vfsmount *);
|
|
|
|
extern int may_umount(struct vfsmount *);
|
2005-11-07 22:20:17 +00:00
|
|
|
extern void umount_tree(struct vfsmount *, int, struct list_head *);
|
2005-11-07 22:19:50 +00:00
|
|
|
extern void release_mounts(struct list_head *);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern long do_mount(char *, char *, char *, unsigned long, void *);
|
2005-11-07 22:19:50 +00:00
|
|
|
extern struct vfsmount *copy_tree(struct vfsmount *, struct dentry *, int);
|
|
|
|
extern void mnt_set_mountpoint(struct vfsmount *, struct dentry *,
|
|
|
|
struct vfsmount *);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2006-06-23 09:02:58 +00:00
|
|
|
extern int vfs_statfs(struct dentry *, struct kstatfs *);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2006-01-17 06:14:23 +00:00
|
|
|
/* /sys/fs */
|
2007-04-13 20:15:19 +00:00
|
|
|
extern struct kset fs_subsys;
|
2006-01-17 06:14:23 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
#define FLOCK_VERIFY_READ 1
|
|
|
|
#define FLOCK_VERIFY_WRITE 2
|
|
|
|
|
|
|
|
extern int locks_mandatory_locked(struct inode *);
|
|
|
|
extern int locks_mandatory_area(int, struct inode *, struct file *, loff_t, size_t);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Candidates for mandatory locking have the setgid bit set
|
|
|
|
* but no group execute bit - an otherwise meaningless combination.
|
|
|
|
*/
|
2007-10-01 21:41:11 +00:00
|
|
|
|
|
|
|
static inline int __mandatory_lock(struct inode *ino)
|
|
|
|
{
|
|
|
|
return (ino->i_mode & (S_ISGID | S_IXGRP)) == S_ISGID;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ... and these candidates should be on MS_MANDLOCK mounted fs,
|
|
|
|
* otherwise these will be advisory locks
|
|
|
|
*/
|
|
|
|
|
|
|
|
static inline int mandatory_lock(struct inode *ino)
|
|
|
|
{
|
|
|
|
return IS_MANDLOCK(ino) && __mandatory_lock(ino);
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
static inline int locks_verify_locked(struct inode *inode)
|
|
|
|
{
|
2007-10-01 21:41:11 +00:00
|
|
|
if (mandatory_lock(inode))
|
2005-04-16 22:20:36 +00:00
|
|
|
return locks_mandatory_locked(inode);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
extern int rw_verify_area(int, struct file *, loff_t *, size_t);
|
|
|
|
|
|
|
|
static inline int locks_verify_truncate(struct inode *inode,
|
|
|
|
struct file *filp,
|
|
|
|
loff_t size)
|
|
|
|
{
|
2007-10-01 21:41:11 +00:00
|
|
|
if (inode->i_flock && mandatory_lock(inode))
|
2005-04-16 22:20:36 +00:00
|
|
|
return locks_mandatory_area(
|
|
|
|
FLOCK_VERIFY_WRITE, inode, filp,
|
|
|
|
size < inode->i_size ? size : inode->i_size,
|
|
|
|
(size < inode->i_size ? inode->i_size - size
|
|
|
|
: size - inode->i_size)
|
|
|
|
);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int break_lease(struct inode *inode, unsigned int mode)
|
|
|
|
{
|
|
|
|
if (inode->i_flock)
|
|
|
|
return __break_lease(inode, mode);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* fs/open.c */
|
|
|
|
|
2006-01-08 09:02:39 +00:00
|
|
|
extern int do_truncate(struct dentry *, loff_t start, unsigned int time_attrs,
|
|
|
|
struct file *filp);
|
2006-01-19 01:43:53 +00:00
|
|
|
extern long do_sys_open(int fdf, const char __user *filename, int flags,
|
|
|
|
int mode);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern struct file *filp_open(const char *, int, int);
|
|
|
|
extern struct file * dentry_open(struct dentry *, struct vfsmount *, int);
|
|
|
|
extern int filp_close(struct file *, fl_owner_t id);
|
|
|
|
extern char * getname(const char __user *);
|
|
|
|
|
|
|
|
/* fs/dcache.c */
|
|
|
|
extern void __init vfs_caches_init_early(void);
|
|
|
|
extern void __init vfs_caches_init(unsigned long);
|
|
|
|
|
2006-12-07 04:32:57 +00:00
|
|
|
extern struct kmem_cache *names_cachep;
|
|
|
|
|
2006-12-07 04:33:17 +00:00
|
|
|
#define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL)
|
2005-04-16 22:20:36 +00:00
|
|
|
#define __putname(name) kmem_cache_free(names_cachep, (void *)(name))
|
|
|
|
#ifndef CONFIG_AUDITSYSCALL
|
|
|
|
#define putname(name) __putname(name)
|
|
|
|
#else
|
|
|
|
extern void putname(const char *name);
|
|
|
|
#endif
|
|
|
|
|
[PATCH] BLOCK: Make it possible to disable the block layer [try #6]
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 18:45:40 +00:00
|
|
|
#ifdef CONFIG_BLOCK
|
2005-04-16 22:20:36 +00:00
|
|
|
extern int register_blkdev(unsigned int, const char *);
|
2007-07-17 11:03:47 +00:00
|
|
|
extern void unregister_blkdev(unsigned int, const char *);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern struct block_device *bdget(dev_t);
|
|
|
|
extern void bd_set_size(struct block_device *, loff_t size);
|
|
|
|
extern void bd_forget(struct inode *inode);
|
|
|
|
extern void bdput(struct block_device *);
|
|
|
|
extern struct block_device *open_by_devnum(dev_t, unsigned);
|
2006-06-28 11:26:44 +00:00
|
|
|
extern const struct address_space_operations def_blk_aops;
|
[PATCH] BLOCK: Make it possible to disable the block layer [try #6]
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 18:45:40 +00:00
|
|
|
#else
|
|
|
|
static inline void bd_forget(struct inode *inode) {}
|
|
|
|
#endif
|
|
|
|
extern const struct file_operations def_blk_fops;
|
2006-03-28 09:56:42 +00:00
|
|
|
extern const struct file_operations def_chr_fops;
|
|
|
|
extern const struct file_operations bad_sock_fops;
|
|
|
|
extern const struct file_operations def_fifo_fops;
|
[PATCH] BLOCK: Make it possible to disable the block layer [try #6]
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 18:45:40 +00:00
|
|
|
#ifdef CONFIG_BLOCK
|
2005-04-16 22:20:36 +00:00
|
|
|
extern int ioctl_by_bdev(struct block_device *, unsigned, unsigned long);
|
|
|
|
extern int blkdev_ioctl(struct inode *, struct file *, unsigned, unsigned long);
|
2006-10-03 08:15:21 +00:00
|
|
|
extern int blkdev_driver_ioctl(struct inode *inode, struct file *file,
|
|
|
|
struct gendisk *disk, unsigned cmd,
|
|
|
|
unsigned long arg);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern long compat_blkdev_ioctl(struct file *, unsigned, unsigned long);
|
|
|
|
extern int blkdev_get(struct block_device *, mode_t, unsigned);
|
|
|
|
extern int blkdev_put(struct block_device *);
|
|
|
|
extern int bd_claim(struct block_device *, void *);
|
|
|
|
extern void bd_release(struct block_device *);
|
2006-03-27 09:17:57 +00:00
|
|
|
#ifdef CONFIG_SYSFS
|
|
|
|
extern int bd_claim_by_disk(struct block_device *, void *, struct gendisk *);
|
|
|
|
extern void bd_release_from_disk(struct block_device *, struct gendisk *);
|
|
|
|
#else
|
|
|
|
#define bd_claim_by_disk(bdev, holder, disk) bd_claim(bdev, holder)
|
|
|
|
#define bd_release_from_disk(bdev, disk) bd_release(bdev)
|
|
|
|
#endif
|
[PATCH] BLOCK: Make it possible to disable the block layer [try #6]
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 18:45:40 +00:00
|
|
|
#endif
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* fs/char_dev.c */
|
2006-03-31 10:30:32 +00:00
|
|
|
#define CHRDEV_MAJOR_HASH_SIZE 255
|
2005-04-16 22:20:36 +00:00
|
|
|
extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *);
|
|
|
|
extern int register_chrdev_region(dev_t, unsigned, const char *);
|
|
|
|
extern int register_chrdev(unsigned int, const char *,
|
2006-03-28 09:56:41 +00:00
|
|
|
const struct file_operations *);
|
2007-07-19 08:47:51 +00:00
|
|
|
extern void unregister_chrdev(unsigned int, const char *);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern void unregister_chrdev_region(dev_t, unsigned);
|
|
|
|
extern int chrdev_open(struct inode *, struct file *);
|
2006-03-31 10:30:32 +00:00
|
|
|
extern void chrdev_show(struct seq_file *,off_t);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* fs/block_dev.c */
|
|
|
|
#define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */
|
[PATCH] BLOCK: Make it possible to disable the block layer [try #6]
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 18:45:40 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
|
|
#define BLKDEV_MAJOR_HASH_SIZE 255
|
2005-04-16 22:20:36 +00:00
|
|
|
extern const char *__bdevname(dev_t, char *buffer);
|
|
|
|
extern const char *bdevname(struct block_device *bdev, char *buffer);
|
|
|
|
extern struct block_device *lookup_bdev(const char *);
|
|
|
|
extern struct block_device *open_bdev_excl(const char *, int, void *);
|
|
|
|
extern void close_bdev_excl(struct block_device *);
|
2006-03-31 10:30:32 +00:00
|
|
|
extern void blkdev_show(struct seq_file *,off_t);
|
[PATCH] BLOCK: Make it possible to disable the block layer [try #6]
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 18:45:40 +00:00
|
|
|
#else
|
|
|
|
#define BLKDEV_MAJOR_HASH_SIZE 0
|
|
|
|
#endif
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
extern void init_special_inode(struct inode *, umode_t, dev_t);
|
|
|
|
|
|
|
|
/* Invalid inode operations -- fs/bad_inode.c */
|
|
|
|
extern void make_bad_inode(struct inode *);
|
|
|
|
extern int is_bad_inode(struct inode *);
|
|
|
|
|
2006-03-28 09:56:42 +00:00
|
|
|
extern const struct file_operations read_fifo_fops;
|
|
|
|
extern const struct file_operations write_fifo_fops;
|
|
|
|
extern const struct file_operations rdwr_fifo_fops;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
extern int fs_may_remount_ro(struct super_block *);
|
|
|
|
|
[PATCH] BLOCK: Make it possible to disable the block layer [try #6]
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 18:45:40 +00:00
|
|
|
#ifdef CONFIG_BLOCK
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* return READ, READA, or WRITE
|
|
|
|
*/
|
|
|
|
#define bio_rw(bio) ((bio)->bi_rw & (RW_MASK | RWA_MASK))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* return data direction, READ or WRITE
|
|
|
|
*/
|
|
|
|
#define bio_data_dir(bio) ((bio)->bi_rw & 1)
|
|
|
|
|
|
|
|
extern int check_disk_change(struct block_device *);
|
2005-05-05 23:15:59 +00:00
|
|
|
extern int __invalidate_device(struct block_device *);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern int invalidate_partition(struct gendisk *, int);
|
[PATCH] BLOCK: Make it possible to disable the block layer [try #6]
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 18:45:40 +00:00
|
|
|
#endif
|
|
|
|
extern int invalidate_inodes(struct super_block *);
|
2007-07-16 06:38:14 +00:00
|
|
|
unsigned long __invalidate_mapping_pages(struct address_space *mapping,
|
|
|
|
pgoff_t start, pgoff_t end,
|
|
|
|
bool be_atomic);
|
2005-04-16 22:20:36 +00:00
|
|
|
unsigned long invalidate_mapping_pages(struct address_space *mapping,
|
|
|
|
pgoff_t start, pgoff_t end);
|
2007-02-10 09:45:38 +00:00
|
|
|
|
2007-02-10 09:45:39 +00:00
|
|
|
static inline unsigned long __deprecated
|
2007-02-10 09:45:38 +00:00
|
|
|
invalidate_inode_pages(struct address_space *mapping)
|
|
|
|
{
|
|
|
|
return invalidate_mapping_pages(mapping, 0, ~0UL);
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
static inline void invalidate_remote_inode(struct inode *inode)
|
|
|
|
{
|
|
|
|
if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
|
|
|
|
S_ISLNK(inode->i_mode))
|
2007-02-10 09:45:39 +00:00
|
|
|
invalidate_mapping_pages(inode->i_mapping, 0, -1);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
extern int invalidate_inode_pages2(struct address_space *mapping);
|
|
|
|
extern int invalidate_inode_pages2_range(struct address_space *mapping,
|
|
|
|
pgoff_t start, pgoff_t end);
|
|
|
|
extern int write_inode_now(struct inode *, int);
|
|
|
|
extern int filemap_fdatawrite(struct address_space *);
|
|
|
|
extern int filemap_flush(struct address_space *);
|
|
|
|
extern int filemap_fdatawait(struct address_space *);
|
|
|
|
extern int filemap_write_and_wait(struct address_space *mapping);
|
|
|
|
extern int filemap_write_and_wait_range(struct address_space *mapping,
|
|
|
|
loff_t lstart, loff_t lend);
|
[PATCH] fadvise(): write commands
Add two new linux-specific fadvise extensions():
LINUX_FADV_ASYNC_WRITE: start async writeout of any dirty pages between file
offsets `offset' and `offset+len'. Any pages which are currently under
writeout are skipped, whether or not they are dirty.
LINUX_FADV_WRITE_WAIT: wait upon writeout of any dirty pages between file
offsets `offset' and `offset+len'.
By combining these two operations the application may do several things:
LINUX_FADV_ASYNC_WRITE: push some or all of the dirty pages at the disk.
LINUX_FADV_WRITE_WAIT, LINUX_FADV_ASYNC_WRITE: push all of the currently dirty
pages at the disk.
LINUX_FADV_WRITE_WAIT, LINUX_FADV_ASYNC_WRITE, LINUX_FADV_WRITE_WAIT: push all
of the currently dirty pages at the disk, wait until they have been written.
It should be noted that none of these operations write out the file's
metadata. So unless the application is strictly performing overwrites of
already-instantiated disk blocks, there are no guarantees here that the data
will be available after a crash.
To complete this suite of operations I guess we should have a "sync file
metadata only" operation. This gives applications access to all the building
blocks needed for all sorts of sync operations. But sync-metadata doesn't fit
well with the fadvise() interface. Probably it should be a new syscall:
sys_fmetadatasync().
The patch also diddles with the meaning of `endbyte' in sys_fadvise64_64().
It is made to represent that last affected byte in the file (ie: it is
inclusive). Generally, all these byterange and pagerange functions are
inclusive so we can easily represent EOF with -1.
As Ulrich notes, these two functions are somewhat abusive of the fadvise()
concept, which appears to be "set the future policy for this fd".
But these commands are a perfect fit with the fadvise() impementation, and
several of the existing fadvise() commands are synchronous and don't affect
future policy either. I think we can live with the slight incongruity.
Cc: Michael Kerrisk <mtk-manpages@gmx.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-24 11:18:04 +00:00
|
|
|
extern int wait_on_page_writeback_range(struct address_space *mapping,
|
|
|
|
pgoff_t start, pgoff_t end);
|
|
|
|
extern int __filemap_fdatawrite_range(struct address_space *mapping,
|
|
|
|
loff_t start, loff_t end, int sync_mode);
|
|
|
|
|
2006-03-24 11:18:14 +00:00
|
|
|
extern long do_fsync(struct file *file, int datasync);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern void sync_supers(void);
|
|
|
|
extern void sync_filesystems(int wait);
|
2006-08-29 18:05:54 +00:00
|
|
|
extern void __fsync_super(struct super_block *sb);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern void emergency_sync(void);
|
|
|
|
extern void emergency_remount(void);
|
|
|
|
extern int do_remount_sb(struct super_block *sb, int flags,
|
|
|
|
void *data, int force);
|
[PATCH] BLOCK: Make it possible to disable the block layer [try #6]
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 18:45:40 +00:00
|
|
|
#ifdef CONFIG_BLOCK
|
2005-04-16 22:20:36 +00:00
|
|
|
extern sector_t bmap(struct inode *, sector_t);
|
[PATCH] BLOCK: Make it possible to disable the block layer [try #6]
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 18:45:40 +00:00
|
|
|
#endif
|
2005-04-16 22:20:36 +00:00
|
|
|
extern int notify_change(struct dentry *, struct iattr *);
|
|
|
|
extern int permission(struct inode *, int, struct nameidata *);
|
|
|
|
extern int generic_permission(struct inode *, int,
|
|
|
|
int (*check_acl)(struct inode *, int));
|
|
|
|
|
|
|
|
extern int get_write_access(struct inode *);
|
|
|
|
extern int deny_write_access(struct file *);
|
|
|
|
static inline void put_write_access(struct inode * inode)
|
|
|
|
{
|
|
|
|
atomic_dec(&inode->i_writecount);
|
|
|
|
}
|
|
|
|
static inline void allow_write_access(struct file *file)
|
|
|
|
{
|
|
|
|
if (file)
|
2006-12-08 10:36:35 +00:00
|
|
|
atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
extern int do_pipe(int *);
|
2006-10-01 06:29:26 +00:00
|
|
|
extern struct file *create_read_pipe(struct file *f);
|
|
|
|
extern struct file *create_write_pipe(void);
|
|
|
|
extern void free_write_pipe(struct file *);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2006-01-19 01:43:53 +00:00
|
|
|
extern int open_namei(int dfd, const char *, int, int, struct nameidata *);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern int may_open(struct nameidata *, int, int);
|
|
|
|
|
|
|
|
extern int kernel_read(struct file *, unsigned long, char *, unsigned long);
|
|
|
|
extern struct file * open_exec(const char *);
|
|
|
|
|
|
|
|
/* fs/dcache.c -- generic fs support functions */
|
|
|
|
extern int is_subdir(struct dentry *, struct dentry *);
|
|
|
|
extern ino_t find_inode_number(struct dentry *, struct qstr *);
|
|
|
|
|
|
|
|
#include <linux/err.h>
|
|
|
|
|
|
|
|
/* needed for stackable file system support */
|
|
|
|
extern loff_t default_llseek(struct file *file, loff_t offset, int origin);
|
|
|
|
|
|
|
|
extern loff_t vfs_llseek(struct file *file, loff_t offset, int origin);
|
|
|
|
|
|
|
|
extern void inode_init_once(struct inode *);
|
|
|
|
extern void iput(struct inode *);
|
|
|
|
extern struct inode * igrab(struct inode *);
|
|
|
|
extern ino_t iunique(struct super_block *, ino_t);
|
|
|
|
extern int inode_needs_sync(struct inode *inode);
|
|
|
|
extern void generic_delete_inode(struct inode *inode);
|
2005-07-08 00:56:03 +00:00
|
|
|
extern void generic_drop_inode(struct inode *inode);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2005-07-13 08:10:44 +00:00
|
|
|
extern struct inode *ilookup5_nowait(struct super_block *sb,
|
|
|
|
unsigned long hashval, int (*test)(struct inode *, void *),
|
|
|
|
void *data);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
|
|
|
|
int (*test)(struct inode *, void *), void *data);
|
|
|
|
extern struct inode *ilookup(struct super_block *sb, unsigned long ino);
|
|
|
|
|
|
|
|
extern struct inode * iget5_locked(struct super_block *, unsigned long, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *);
|
|
|
|
extern struct inode * iget_locked(struct super_block *, unsigned long);
|
|
|
|
extern void unlock_new_inode(struct inode *);
|
|
|
|
|
|
|
|
static inline struct inode *iget(struct super_block *sb, unsigned long ino)
|
|
|
|
{
|
|
|
|
struct inode *inode = iget_locked(sb, ino);
|
|
|
|
|
|
|
|
if (inode && (inode->i_state & I_NEW)) {
|
|
|
|
sb->s_op->read_inode(inode);
|
|
|
|
unlock_new_inode(inode);
|
|
|
|
}
|
|
|
|
|
|
|
|
return inode;
|
|
|
|
}
|
|
|
|
|
|
|
|
extern void __iget(struct inode * inode);
|
|
|
|
extern void clear_inode(struct inode *);
|
|
|
|
extern void destroy_inode(struct inode *);
|
|
|
|
extern struct inode *new_inode(struct super_block *);
|
2006-10-17 17:50:36 +00:00
|
|
|
extern int __remove_suid(struct dentry *, int);
|
|
|
|
extern int should_remove_suid(struct dentry *);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern int remove_suid(struct dentry *);
|
|
|
|
|
|
|
|
extern void __insert_inode_hash(struct inode *, unsigned long hashval);
|
|
|
|
extern void remove_inode_hash(struct inode *);
|
|
|
|
static inline void insert_inode_hash(struct inode *inode) {
|
|
|
|
__insert_inode_hash(inode, inode->i_ino);
|
|
|
|
}
|
|
|
|
|
|
|
|
extern struct file * get_empty_filp(void);
|
|
|
|
extern void file_move(struct file *f, struct list_head *list);
|
|
|
|
extern void file_kill(struct file *f);
|
[PATCH] BLOCK: Make it possible to disable the block layer [try #6]
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 18:45:40 +00:00
|
|
|
#ifdef CONFIG_BLOCK
|
2005-04-16 22:20:36 +00:00
|
|
|
struct bio;
|
|
|
|
extern void submit_bio(int, struct bio *);
|
|
|
|
extern int bdev_read_only(struct block_device *);
|
[PATCH] BLOCK: Make it possible to disable the block layer [try #6]
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 18:45:40 +00:00
|
|
|
#endif
|
2005-04-16 22:20:36 +00:00
|
|
|
extern int set_blocksize(struct block_device *, int);
|
|
|
|
extern int sb_set_blocksize(struct super_block *, int);
|
|
|
|
extern int sb_min_blocksize(struct super_block *, int);
|
2007-10-17 06:30:39 +00:00
|
|
|
extern int sb_has_dirty_inodes(struct super_block *);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
extern int generic_file_mmap(struct file *, struct vm_area_struct *);
|
|
|
|
extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *);
|
|
|
|
extern int file_read_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size);
|
|
|
|
int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk);
|
2006-10-01 06:28:46 +00:00
|
|
|
extern ssize_t generic_file_aio_read(struct kiocb *, const struct iovec *, unsigned long, loff_t);
|
|
|
|
extern ssize_t generic_file_aio_write(struct kiocb *, const struct iovec *, unsigned long, loff_t);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern ssize_t generic_file_aio_write_nolock(struct kiocb *, const struct iovec *,
|
2006-10-01 06:28:46 +00:00
|
|
|
unsigned long, loff_t);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern ssize_t generic_file_direct_write(struct kiocb *, const struct iovec *,
|
|
|
|
unsigned long *, loff_t, loff_t *, size_t, size_t);
|
|
|
|
extern ssize_t generic_file_buffered_write(struct kiocb *, const struct iovec *,
|
|
|
|
unsigned long, loff_t, loff_t *, size_t, ssize_t);
|
|
|
|
extern ssize_t do_sync_read(struct file *filp, char __user *buf, size_t len, loff_t *ppos);
|
|
|
|
extern ssize_t do_sync_write(struct file *filp, const char __user *buf, size_t len, loff_t *ppos);
|
|
|
|
extern void do_generic_mapping_read(struct address_space *mapping,
|
|
|
|
struct file_ra_state *, struct file *,
|
|
|
|
loff_t *, read_descriptor_t *, read_actor_t);
|
2007-05-08 07:23:02 +00:00
|
|
|
extern int generic_segment_checks(const struct iovec *iov,
|
|
|
|
unsigned long *nr_segs, size_t *count, int access_flags);
|
2006-04-11 11:59:36 +00:00
|
|
|
|
|
|
|
/* fs/splice.c */
|
2006-04-11 12:57:50 +00:00
|
|
|
extern ssize_t generic_file_splice_read(struct file *, loff_t *,
|
2006-04-11 11:59:36 +00:00
|
|
|
struct pipe_inode_info *, size_t, unsigned int);
|
|
|
|
extern ssize_t generic_file_splice_write(struct pipe_inode_info *,
|
2006-04-11 12:57:50 +00:00
|
|
|
struct file *, loff_t *, size_t, unsigned int);
|
2006-10-17 16:43:07 +00:00
|
|
|
extern ssize_t generic_file_splice_write_nolock(struct pipe_inode_info *,
|
|
|
|
struct file *, loff_t *, size_t, unsigned int);
|
2006-04-11 11:59:36 +00:00
|
|
|
extern ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe,
|
2006-04-11 12:57:50 +00:00
|
|
|
struct file *out, loff_t *, size_t len, unsigned int flags);
|
|
|
|
extern long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
|
2006-04-11 11:59:36 +00:00
|
|
|
size_t len, unsigned int flags);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
extern void
|
|
|
|
file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping);
|
|
|
|
extern loff_t no_llseek(struct file *file, loff_t offset, int origin);
|
|
|
|
extern loff_t generic_file_llseek(struct file *file, loff_t offset, int origin);
|
|
|
|
extern loff_t remote_llseek(struct file *file, loff_t offset, int origin);
|
|
|
|
extern int generic_file_open(struct inode * inode, struct file * filp);
|
|
|
|
extern int nonseekable_open(struct inode * inode, struct file * filp);
|
|
|
|
|
2005-06-24 05:05:25 +00:00
|
|
|
#ifdef CONFIG_FS_XIP
|
2005-06-24 05:05:28 +00:00
|
|
|
extern ssize_t xip_file_read(struct file *filp, char __user *buf, size_t len,
|
|
|
|
loff_t *ppos);
|
2005-06-24 05:05:25 +00:00
|
|
|
extern int xip_file_mmap(struct file * file, struct vm_area_struct * vma);
|
2005-06-24 05:05:28 +00:00
|
|
|
extern ssize_t xip_file_write(struct file *filp, const char __user *buf,
|
|
|
|
size_t len, loff_t *ppos);
|
2005-06-24 05:05:25 +00:00
|
|
|
extern int xip_truncate_page(struct address_space *mapping, loff_t from);
|
2005-06-24 05:05:26 +00:00
|
|
|
#else
|
|
|
|
static inline int xip_truncate_page(struct address_space *mapping, loff_t from)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
2005-06-24 05:05:25 +00:00
|
|
|
#endif
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
static inline void do_generic_file_read(struct file * filp, loff_t *ppos,
|
|
|
|
read_descriptor_t * desc,
|
|
|
|
read_actor_t actor)
|
|
|
|
{
|
|
|
|
do_generic_mapping_read(filp->f_mapping,
|
|
|
|
&filp->f_ra,
|
|
|
|
filp,
|
|
|
|
ppos,
|
|
|
|
desc,
|
|
|
|
actor);
|
|
|
|
}
|
|
|
|
|
[PATCH] BLOCK: Make it possible to disable the block layer [try #6]
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 18:45:40 +00:00
|
|
|
#ifdef CONFIG_BLOCK
|
2005-04-16 22:20:36 +00:00
|
|
|
ssize_t __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
|
|
|
|
struct block_device *bdev, const struct iovec *iov, loff_t offset,
|
2006-03-26 09:38:02 +00:00
|
|
|
unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
|
2005-04-16 22:20:36 +00:00
|
|
|
int lock_type);
|
|
|
|
|
|
|
|
enum {
|
|
|
|
DIO_LOCKING = 1, /* need locking between buffered and direct access */
|
|
|
|
DIO_NO_LOCKING, /* bdev; no locking at all between buffered/direct */
|
|
|
|
DIO_OWN_LOCKING, /* filesystem locks buffered and direct internally */
|
|
|
|
};
|
|
|
|
|
|
|
|
static inline ssize_t blockdev_direct_IO(int rw, struct kiocb *iocb,
|
|
|
|
struct inode *inode, struct block_device *bdev, const struct iovec *iov,
|
2006-03-26 09:38:02 +00:00
|
|
|
loff_t offset, unsigned long nr_segs, get_block_t get_block,
|
2005-04-16 22:20:36 +00:00
|
|
|
dio_iodone_t end_io)
|
|
|
|
{
|
|
|
|
return __blockdev_direct_IO(rw, iocb, inode, bdev, iov, offset,
|
2006-03-26 09:38:02 +00:00
|
|
|
nr_segs, get_block, end_io, DIO_LOCKING);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline ssize_t blockdev_direct_IO_no_locking(int rw, struct kiocb *iocb,
|
|
|
|
struct inode *inode, struct block_device *bdev, const struct iovec *iov,
|
2006-03-26 09:38:02 +00:00
|
|
|
loff_t offset, unsigned long nr_segs, get_block_t get_block,
|
2005-04-16 22:20:36 +00:00
|
|
|
dio_iodone_t end_io)
|
|
|
|
{
|
|
|
|
return __blockdev_direct_IO(rw, iocb, inode, bdev, iov, offset,
|
2006-03-26 09:38:02 +00:00
|
|
|
nr_segs, get_block, end_io, DIO_NO_LOCKING);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline ssize_t blockdev_direct_IO_own_locking(int rw, struct kiocb *iocb,
|
|
|
|
struct inode *inode, struct block_device *bdev, const struct iovec *iov,
|
2006-03-26 09:38:02 +00:00
|
|
|
loff_t offset, unsigned long nr_segs, get_block_t get_block,
|
2005-04-16 22:20:36 +00:00
|
|
|
dio_iodone_t end_io)
|
|
|
|
{
|
|
|
|
return __blockdev_direct_IO(rw, iocb, inode, bdev, iov, offset,
|
2006-03-26 09:38:02 +00:00
|
|
|
nr_segs, get_block, end_io, DIO_OWN_LOCKING);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
[PATCH] BLOCK: Make it possible to disable the block layer [try #6]
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 18:45:40 +00:00
|
|
|
#endif
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2006-03-28 09:56:42 +00:00
|
|
|
extern const struct file_operations generic_ro_fops;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
#define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m))
|
|
|
|
|
|
|
|
extern int vfs_readlink(struct dentry *, char __user *, int, const char *);
|
|
|
|
extern int vfs_follow_link(struct nameidata *, const char *);
|
|
|
|
extern int page_readlink(struct dentry *, char __user *, int);
|
2005-08-20 01:02:56 +00:00
|
|
|
extern void *page_follow_link_light(struct dentry *, struct nameidata *);
|
|
|
|
extern void page_put_link(struct dentry *, struct nameidata *, void *);
|
2006-03-11 11:27:13 +00:00
|
|
|
extern int __page_symlink(struct inode *inode, const char *symname, int len,
|
|
|
|
gfp_t gfp_mask);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern int page_symlink(struct inode *inode, const char *symname, int len);
|
2007-02-12 08:55:40 +00:00
|
|
|
extern const struct inode_operations page_symlink_inode_operations;
|
2005-04-16 22:20:36 +00:00
|
|
|
extern int generic_readlink(struct dentry *, char __user *, int);
|
|
|
|
extern void generic_fillattr(struct inode *, struct kstat *);
|
|
|
|
extern int vfs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
|
|
|
|
void inode_add_bytes(struct inode *inode, loff_t bytes);
|
|
|
|
void inode_sub_bytes(struct inode *inode, loff_t bytes);
|
|
|
|
loff_t inode_get_bytes(struct inode *inode);
|
|
|
|
void inode_set_bytes(struct inode *inode, loff_t bytes);
|
|
|
|
|
|
|
|
extern int vfs_readdir(struct file *, filldir_t, void *);
|
|
|
|
|
|
|
|
extern int vfs_stat(char __user *, struct kstat *);
|
|
|
|
extern int vfs_lstat(char __user *, struct kstat *);
|
2006-01-19 01:43:53 +00:00
|
|
|
extern int vfs_stat_fd(int dfd, char __user *, struct kstat *);
|
|
|
|
extern int vfs_lstat_fd(int dfd, char __user *, struct kstat *);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern int vfs_fstat(unsigned int, struct kstat *);
|
|
|
|
|
|
|
|
extern int vfs_ioctl(struct file *, unsigned int, unsigned int, unsigned long);
|
|
|
|
|
|
|
|
extern struct file_system_type *get_fs_type(const char *name);
|
|
|
|
extern struct super_block *get_super(struct block_device *);
|
|
|
|
extern struct super_block *user_get_super(dev_t);
|
|
|
|
extern void drop_super(struct super_block *sb);
|
|
|
|
|
|
|
|
extern int dcache_dir_open(struct inode *, struct file *);
|
|
|
|
extern int dcache_dir_close(struct inode *, struct file *);
|
|
|
|
extern loff_t dcache_dir_lseek(struct file *, loff_t, int);
|
|
|
|
extern int dcache_readdir(struct file *, void *, filldir_t);
|
|
|
|
extern int simple_getattr(struct vfsmount *, struct dentry *, struct kstat *);
|
2006-06-23 09:02:58 +00:00
|
|
|
extern int simple_statfs(struct dentry *, struct kstatfs *);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern int simple_link(struct dentry *, struct inode *, struct dentry *);
|
|
|
|
extern int simple_unlink(struct inode *, struct dentry *);
|
|
|
|
extern int simple_rmdir(struct inode *, struct dentry *);
|
|
|
|
extern int simple_rename(struct inode *, struct dentry *, struct inode *, struct dentry *);
|
|
|
|
extern int simple_sync_file(struct file *, struct dentry *, int);
|
|
|
|
extern int simple_empty(struct dentry *);
|
|
|
|
extern int simple_readpage(struct file *file, struct page *page);
|
|
|
|
extern int simple_prepare_write(struct file *file, struct page *page,
|
|
|
|
unsigned offset, unsigned to);
|
2007-10-16 08:25:01 +00:00
|
|
|
extern int simple_write_begin(struct file *file, struct address_space *mapping,
|
|
|
|
loff_t pos, unsigned len, unsigned flags,
|
|
|
|
struct page **pagep, void **fsdata);
|
|
|
|
extern int simple_write_end(struct file *file, struct address_space *mapping,
|
|
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
|
|
struct page *page, void *fsdata);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
extern struct dentry *simple_lookup(struct inode *, struct dentry *, struct nameidata *);
|
|
|
|
extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *);
|
2006-03-28 09:56:42 +00:00
|
|
|
extern const struct file_operations simple_dir_operations;
|
2007-02-12 08:55:40 +00:00
|
|
|
extern const struct inode_operations simple_dir_inode_operations;
|
2006-03-28 09:56:42 +00:00
|
|
|
struct tree_descr { char *name; const struct file_operations *ops; int mode; };
|
2005-04-16 22:20:36 +00:00
|
|
|
struct dentry *d_alloc_name(struct dentry *, const char *);
|
|
|
|
extern int simple_fill_super(struct super_block *, int, struct tree_descr *);
|
2006-06-09 13:34:16 +00:00
|
|
|
extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count);
|
2005-04-16 22:20:36 +00:00
|
|
|
extern void simple_release_fs(struct vfsmount **mount, int *count);
|
|
|
|
|
|
|
|
extern ssize_t simple_read_from_buffer(void __user *, size_t, loff_t *, const void *, size_t);
|
|
|
|
|
2006-02-01 11:05:41 +00:00
|
|
|
#ifdef CONFIG_MIGRATION
|
2006-06-23 09:03:33 +00:00
|
|
|
extern int buffer_migrate_page(struct address_space *,
|
|
|
|
struct page *, struct page *);
|
2006-02-01 11:05:41 +00:00
|
|
|
#else
|
|
|
|
#define buffer_migrate_page NULL
|
|
|
|
#endif
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
extern int inode_change_ok(struct inode *, struct iattr *);
|
|
|
|
extern int __must_check inode_setattr(struct inode *, struct iattr *);
|
|
|
|
|
2006-01-10 04:52:01 +00:00
|
|
|
extern void file_update_time(struct file *file);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
static inline ino_t parent_ino(struct dentry *dentry)
|
|
|
|
{
|
|
|
|
ino_t res;
|
|
|
|
|
|
|
|
spin_lock(&dentry->d_lock);
|
|
|
|
res = dentry->d_parent->d_inode->i_ino;
|
|
|
|
spin_unlock(&dentry->d_lock);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* kernel/fork.c */
|
|
|
|
extern int unshare_files(void);
|
|
|
|
|
|
|
|
/* Transaction based IO helpers */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* An argresp is stored in an allocated page and holds the
|
|
|
|
* size of the argument or response, along with its content
|
|
|
|
*/
|
|
|
|
struct simple_transaction_argresp {
|
|
|
|
ssize_t size;
|
|
|
|
char data[0];
|
|
|
|
};
|
|
|
|
|
|
|
|
#define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp))
|
|
|
|
|
|
|
|
char *simple_transaction_get(struct file *file, const char __user *buf,
|
|
|
|
size_t size);
|
|
|
|
ssize_t simple_transaction_read(struct file *file, char __user *buf,
|
|
|
|
size_t size, loff_t *pos);
|
|
|
|
int simple_transaction_release(struct inode *inode, struct file *file);
|
|
|
|
|
|
|
|
static inline void simple_transaction_set(struct file *file, size_t n)
|
|
|
|
{
|
|
|
|
struct simple_transaction_argresp *ar = file->private_data;
|
|
|
|
|
|
|
|
BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The barrier ensures that ar->size will really remain zero until
|
|
|
|
* ar->data is ready for reading.
|
|
|
|
*/
|
|
|
|
smp_mb();
|
|
|
|
ar->size = n;
|
|
|
|
}
|
|
|
|
|
2005-05-18 12:40:59 +00:00
|
|
|
/*
|
|
|
|
* simple attribute files
|
|
|
|
*
|
|
|
|
* These attributes behave similar to those in sysfs:
|
|
|
|
*
|
|
|
|
* Writing to an attribute immediately sets a value, an open file can be
|
|
|
|
* written to multiple times.
|
|
|
|
*
|
|
|
|
* Reading from an attribute creates a buffer from the value that might get
|
|
|
|
* read with multiple read calls. When the attribute has been read
|
|
|
|
* completely, no further read calls are possible until the file is opened
|
|
|
|
* again.
|
|
|
|
*
|
|
|
|
* All attributes contain a text representation of a numeric value
|
|
|
|
* that are accessed with the get() and set() functions.
|
|
|
|
*/
|
|
|
|
#define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
|
|
|
|
static int __fops ## _open(struct inode *inode, struct file *file) \
|
|
|
|
{ \
|
|
|
|
__simple_attr_check_format(__fmt, 0ull); \
|
|
|
|
return simple_attr_open(inode, file, __get, __set, __fmt); \
|
|
|
|
} \
|
|
|
|
static struct file_operations __fops = { \
|
|
|
|
.owner = THIS_MODULE, \
|
|
|
|
.open = __fops ## _open, \
|
|
|
|
.release = simple_attr_close, \
|
|
|
|
.read = simple_attr_read, \
|
|
|
|
.write = simple_attr_write, \
|
|
|
|
};
|
|
|
|
|
|
|
|
static inline void __attribute__((format(printf, 1, 2)))
|
|
|
|
__simple_attr_check_format(const char *fmt, ...)
|
|
|
|
{
|
|
|
|
/* don't do anything, just let the compiler check the arguments; */
|
|
|
|
}
|
|
|
|
|
|
|
|
int simple_attr_open(struct inode *inode, struct file *file,
|
|
|
|
u64 (*get)(void *), void (*set)(void *, u64),
|
|
|
|
const char *fmt);
|
|
|
|
int simple_attr_close(struct inode *inode, struct file *file);
|
|
|
|
ssize_t simple_attr_read(struct file *file, char __user *buf,
|
|
|
|
size_t len, loff_t *ppos);
|
|
|
|
ssize_t simple_attr_write(struct file *file, const char __user *buf,
|
|
|
|
size_t len, loff_t *ppos);
|
|
|
|
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
#ifdef CONFIG_SECURITY
|
|
|
|
static inline char *alloc_secdata(void)
|
|
|
|
{
|
|
|
|
return (char *)get_zeroed_page(GFP_KERNEL);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void free_secdata(void *secdata)
|
|
|
|
{
|
|
|
|
free_page((unsigned long)secdata);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static inline char *alloc_secdata(void)
|
|
|
|
{
|
|
|
|
return (char *)1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void free_secdata(void *secdata)
|
|
|
|
{ }
|
|
|
|
#endif /* CONFIG_SECURITY */
|
|
|
|
|
2007-10-17 06:26:21 +00:00
|
|
|
struct ctl_table;
|
|
|
|
int proc_nr_files(struct ctl_table *table, int write, struct file *filp,
|
2007-07-17 11:03:45 +00:00
|
|
|
void __user *buffer, size_t *lenp, loff_t *ppos);
|
|
|
|
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
#endif /* _LINUX_FS_H */
|