aha/mm/memory.c

3414 lines
93 KiB
C
Raw Normal View History

/*
* linux/mm/memory.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*/
/*
* demand-loading started 01.12.91 - seems it is high on the list of
* things wanted, and it should be easy to implement. - Linus
*/
/*
* Ok, demand-loading was easy, shared pages a little bit tricker. Shared
* pages started 02.12.91, seems to work. - Linus.
*
* Tested sharing by executing about 30 /bin/sh: under the old kernel it
* would have taken more than the 6M I have free, but it worked well as
* far as I could see.
*
* Also corrected some "invalidate()"s - I wasn't doing enough of them.
*/
/*
* Real VM (paging to/from disk) started 18.12.91. Much more work and
* thought has to go into this. Oh, well..
* 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
* Found it. Everything seems to work now.
* 20.12.91 - Ok, making the swap-device changeable like the root.
*/
/*
* 05.04.94 - Multi-page memory management added for v1.1.
* Idea by Alex Bligh (alex@cconcepts.co.uk)
*
* 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
* (Gerhard.Wichert@pdb.siemens.de)
*
* Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
*/
#include <linux/kernel_stat.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/ksm.h>
#include <linux/rmap.h>
#include <linux/module.h>
#include <linux/delayacct.h>
#include <linux/init.h>
#include <linux/writeback.h>
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
#include <linux/memcontrol.h>
mmu-notifiers: core With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages. There are secondary MMUs (with secondary sptes and secondary tlbs) too. sptes in the kvm case are shadow pagetables, but when I say spte in mmu-notifier context, I mean "secondary pte". In GRU case there's no actual secondary pte and there's only a secondary tlb because the GRU secondary MMU has no knowledge about sptes and every secondary tlb miss event in the MMU always generates a page fault that has to be resolved by the CPU (this is not the case of KVM where the a secondary tlb miss will walk sptes in hardware and it will refill the secondary tlb transparently to software if the corresponding spte is present). The same way zap_page_range has to invalidate the pte before freeing the page, the spte (and secondary tlb) must also be invalidated before any page is freed and reused. Currently we take a page_count pin on every page mapped by sptes, but that means the pages can't be swapped whenever they're mapped by any spte because they're part of the guest working set. Furthermore a spte unmap event can immediately lead to a page to be freed when the pin is released (so requiring the same complex and relatively slow tlb_gather smp safe logic we have in zap_page_range and that can be avoided completely if the spte unmap event doesn't require an unpin of the page previously mapped in the secondary MMU). The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know when the VM is swapping or freeing or doing anything on the primary MMU so that the secondary MMU code can drop sptes before the pages are freed, avoiding all page pinning and allowing 100% reliable swapping of guest physical address space. Furthermore it avoids the code that teardown the mappings of the secondary MMU, to implement a logic like tlb_gather in zap_page_range that would require many IPI to flush other cpu tlbs, for each fixed number of spte unmapped. To make an example: if what happens on the primary MMU is a protection downgrade (from writeable to wrprotect) the secondary MMU mappings will be invalidated, and the next secondary-mmu-page-fault will call get_user_pages and trigger a do_wp_page through get_user_pages if it called get_user_pages with write=1, and it'll re-establishing an updated spte or secondary-tlb-mapping on the copied page. Or it will setup a readonly spte or readonly tlb mapping if it's a guest-read, if it calls get_user_pages with write=0. This is just an example. This allows to map any page pointed by any pte (and in turn visible in the primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an full MMU with both sptes and secondary-tlb like the shadow-pagetable layer with kvm), or a remote DMA in software like XPMEM (hence needing of schedule in XPMEM code to send the invalidate to the remote node, while no need to schedule in kvm/gru as it's an immediate event like invalidating primary-mmu pte). At least for KVM without this patch it's impossible to swap guests reliably. And having this feature and removing the page pin allows several other optimizations that simplify life considerably. Dependencies: 1) mm_take_all_locks() to register the mmu notifier when the whole VM isn't doing anything with "mm". This allows mmu notifier users to keep track if the VM is in the middle of the invalidate_range_begin/end critical section with an atomic counter incraese in range_begin and decreased in range_end. No secondary MMU page fault is allowed to map any spte or secondary tlb reference, while the VM is in the middle of range_begin/end as any page returned by get_user_pages in that critical section could later immediately be freed without any further ->invalidate_page notification (invalidate_range_begin/end works on ranges and ->invalidate_page isn't called immediately before freeing the page). To stop all page freeing and pagetable overwrites the mmap_sem must be taken in write mode and all other anon_vma/i_mmap locks must be taken too. 2) It'd be a waste to add branches in the VM if nobody could possibly run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of mmu notifiers, but this already allows to compile a KVM external module against a kernel with mmu notifiers enabled and from the next pull from kvm.git we'll start using them. And GRU/XPMEM will also be able to continue the development by enabling KVM=m in their config, until they submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n). This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM are all =n. The mmu_notifier_register call can fail because mm_take_all_locks may be interrupted by a signal and return -EINTR. Because mmu_notifier_reigster is used when a driver startup, a failure can be gracefully handled. Here an example of the change applied to kvm to register the mmu notifiers. Usually when a driver startups other allocations are required anyway and -ENOMEM failure paths exists already. struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); + int err; if (!kvm) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops; + err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm); + if (err) { + kfree(kvm); + return ERR_PTR(err); + } + return kvm; } mmu_notifier_unregister returns void and it's reliable. The patch also adds a few needed but missing includes that would prevent kernel to compile after these changes on non-x86 archs (x86 didn't need them by luck). [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix mm/filemap_xip.c build] [akpm@linux-foundation.org: fix mm/mmu_notifier.c build] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Kanoj Sarcar <kanojsarcar@yahoo.com> Cc: Roland Dreier <rdreier@cisco.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Chris Wright <chrisw@redhat.com> Cc: Marcelo Tosatti <marcelo@kvack.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Izik Eidus <izike@qumranet.com> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-28 22:46:29 +00:00
#include <linux/mmu_notifier.h>
badpage: replace page_remove_rmap Eeek and BUG Now that bad pages are kept out of circulation, there is no need for the infamous page_remove_rmap() BUG() - once that page is freed, its negative mapcount will issue a "Bad page state" message and the page won't be freed. Removing the BUG() allows more info, on subsequent pages, to be gathered. We do have more info about the page at this point than bad_page() can know - notably, what the pmd is, which might pinpoint something like low 64kB corruption - but page_remove_rmap() isn't given the address to find that. In practice, there is only one call to page_remove_rmap() which has ever reported anything, that from zap_pte_range() (usually on exit, sometimes on munmap). It has all the info, so remove page_remove_rmap()'s "Eeek" message and leave it all to zap_pte_range(). mm/memory.c already has a hardly used print_bad_pte() function, showing some of the appropriate info: extend it to show what we want for the rmap case: pte info, page info (when there is a page) and vma info to compare. zap_pte_range() already knows the pmd, but print_bad_pte() is easier to use if it works that out for itself. Some of this info is also shown in bad_page()'s "Bad page state" message. Keep them separate, but adjust them to match each other as far as possible. Say "Bad page map" in print_bad_pte(), and add a TAINT_BAD_PAGE there too. print_bad_pte() show current->comm unconditionally (though it should get repeated in the usually irrelevant stack trace): sorry, I misled Nick Piggin to make it conditional on vm_mm == current->mm, but current->mm is already NULL in the exit case. Usually current->comm is good, though exceptionally it may not be that of the mm (when "swapoff" for example). Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:40:08 +00:00
#include <linux/kallsyms.h>
#include <linux/swapops.h>
#include <linux/elf.h>
#include <asm/io.h>
#include <asm/pgalloc.h>
#include <asm/uaccess.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>
#include "internal.h"
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:07:54 +00:00
#ifndef CONFIG_NEED_MULTIPLE_NODES
/* use the per-pgdat data instead for discontigmem - mbligh */
unsigned long max_mapnr;
struct page *mem_map;
EXPORT_SYMBOL(max_mapnr);
EXPORT_SYMBOL(mem_map);
#endif
unsigned long num_physpages;
/*
* A number of key systems in x86 including ioremap() rely on the assumption
* that high_memory defines the upper bound on direct map memory, then end
* of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
* highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
* and ZONE_HIGHMEM.
*/
void * high_memory;
EXPORT_SYMBOL(num_physpages);
EXPORT_SYMBOL(high_memory);
/*
* Randomize the address space (stacks, mmaps, brk, etc.).
*
* ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
* as ancient (libc5 based) binaries can segfault. )
*/
int randomize_va_space __read_mostly =
#ifdef CONFIG_COMPAT_BRK
1;
#else
2;
#endif
static int __init disable_randmaps(char *s)
{
randomize_va_space = 0;
return 1;
}
__setup("norandmaps", disable_randmaps);
unsigned long zero_pfn __read_mostly;
unsigned long highest_memmap_pfn __read_mostly;
mm: reinstate ZERO_PAGE KAMEZAWA Hiroyuki has observed customers of earlier kernels taking advantage of the ZERO_PAGE: which we stopped do_anonymous_page() from using in 2.6.24. And there were a couple of regression reports on LKML. Following suggestions from Linus, reinstate do_anonymous_page() use of the ZERO_PAGE; but this time avoid dirtying its struct page cacheline with (map)count updates - let vm_normal_page() regard it as abnormal. Use it only on arches which __HAVE_ARCH_PTE_SPECIAL (x86, s390, sh32, most powerpc): that's not essential, but minimizes additional branches (keeping them in the unlikely pte_special case); and incidentally excludes mips (some models of which needed eight colours of ZERO_PAGE to avoid costly exceptions). Don't be fanatical about avoiding ZERO_PAGE updates: get_user_pages() callers won't want to make exceptions for it, so increment its count there. Changes to mlock and migration? happily seems not needed. In most places it's quicker to check pfn than struct page address: prepare a __read_mostly zero_pfn for that. Does get_dump_page() still need its ZERO_PAGE check? probably not, but keep it anyway. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Acked-by: Rik van Riel <riel@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:03:30 +00:00
/*
* CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
*/
static int __init init_zero_pfn(void)
{
zero_pfn = page_to_pfn(ZERO_PAGE(0));
return 0;
}
core_initcall(init_zero_pfn);
/*
* If a p?d_bad entry is found while walking page tables, report
* the error, before resetting entry to p?d_none. Usually (but
* very seldom) called out from the p?d_none_or_clear_bad macros.
*/
void pgd_clear_bad(pgd_t *pgd)
{
pgd_ERROR(*pgd);
pgd_clear(pgd);
}
void pud_clear_bad(pud_t *pud)
{
pud_ERROR(*pud);
pud_clear(pud);
}
void pmd_clear_bad(pmd_t *pmd)
{
pmd_ERROR(*pmd);
pmd_clear(pmd);
}
/*
* Note: this doesn't free the actual pages themselves. That
* has been handled earlier when unmapping all the memory regions.
*/
static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
unsigned long addr)
{
CONFIG_HIGHPTE vs. sub-page page tables. Background: I've implemented 1K/2K page tables for s390. These sub-page page tables are required to properly support the s390 virtualization instruction with KVM. The SIE instruction requires that the page tables have 256 page table entries (pte) followed by 256 page status table entries (pgste). The pgstes are only required if the process is using the SIE instruction. The pgstes are updated by the hardware and by the hypervisor for a number of reasons, one of them is dirty and reference bit tracking. To avoid wasting memory the standard pte table allocation should return 1K/2K (31/64 bit) and 2K/4K if the process is using SIE. Problem: Page size on s390 is 4K, page table size is 1K or 2K. That means the s390 version for pte_alloc_one cannot return a pointer to a struct page. Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one cannot return a pointer to a pte either, since that would require more than 32 bit for the return value of pte_alloc_one (and the pte * would not be accessible since its not kmapped). Solution: The only solution I found to this dilemma is a new typedef: a pgtable_t. For s390 pgtable_t will be a (pte *) - to be introduced with a later patch. For everybody else it will be a (struct page *). The additional problem with the initialization of the ptl lock and the NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and a destructor pgtable_page_dtor. The page table allocation and free functions need to call these two whenever a page table page is allocated or freed. pmd_populate will get a pgtable_t instead of a struct page pointer. To get the pgtable_t back from a pmd entry that has been installed with pmd_populate a new function pmd_pgtable is added. It replaces the pmd_page call in free_pte_range and apply_to_pte_range. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 12:22:04 +00:00
pgtable_t token = pmd_pgtable(*pmd);
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 20:29:15 +00:00
pmd_clear(pmd);
pte_free_tlb(tlb, token, addr);
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 20:29:15 +00:00
tlb->mm->nr_ptes--;
}
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 20:29:15 +00:00
static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
pmd_t *pmd;
unsigned long next;
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 20:29:15 +00:00
unsigned long start;
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 20:29:15 +00:00
start = addr;
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
if (pmd_none_or_clear_bad(pmd))
continue;
free_pte_range(tlb, pmd, addr);
} while (pmd++, addr = next, addr != end);
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 20:29:15 +00:00
start &= PUD_MASK;
if (start < floor)
return;
if (ceiling) {
ceiling &= PUD_MASK;
if (!ceiling)
return;
}
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 20:29:15 +00:00
if (end - 1 > ceiling - 1)
return;
pmd = pmd_offset(pud, start);
pud_clear(pud);
pmd_free_tlb(tlb, pmd, start);
}
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 20:29:15 +00:00
static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
pud_t *pud;
unsigned long next;
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 20:29:15 +00:00
unsigned long start;
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 20:29:15 +00:00
start = addr;
pud = pud_offset(pgd, addr);
do {
next = pud_addr_end(addr, end);
if (pud_none_or_clear_bad(pud))
continue;
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 20:29:15 +00:00
free_pmd_range(tlb, pud, addr, next, floor, ceiling);
} while (pud++, addr = next, addr != end);
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 20:29:15 +00:00
start &= PGDIR_MASK;
if (start < floor)
return;
if (ceiling) {
ceiling &= PGDIR_MASK;
if (!ceiling)
return;
}
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 20:29:15 +00:00
if (end - 1 > ceiling - 1)
return;
pud = pud_offset(pgd, start);
pgd_clear(pgd);
pud_free_tlb(tlb, pud, start);
}
/*
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 20:29:15 +00:00
* This function frees user-level page tables of a process.
*
* Must be called with pagetable lock held.
*/
void free_pgd_range(struct mmu_gather *tlb,
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 20:29:15 +00:00
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
pgd_t *pgd;
unsigned long next;
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 20:29:15 +00:00
unsigned long start;
/*
* The next few lines have given us lots of grief...
*
* Why are we testing PMD* at this top level? Because often
* there will be no work to do at all, and we'd prefer not to
* go all the way down to the bottom just to discover that.
*
* Why all these "- 1"s? Because 0 represents both the bottom
* of the address space and the top of it (using -1 for the
* top wouldn't help much: the masks would do the wrong thing).
* The rule is that addr 0 and floor 0 refer to the bottom of
* the address space, but end 0 and ceiling 0 refer to the top
* Comparisons need to use "end - 1" and "ceiling - 1" (though
* that end 0 case should be mythical).
*
* Wherever addr is brought up or ceiling brought down, we must
* be careful to reject "the opposite 0" before it confuses the
* subsequent tests. But what about where end is brought down
* by PMD_SIZE below? no, end can't go down to 0 there.
*
* Whereas we round start (addr) and ceiling down, by different
* masks at different levels, in order to test whether a table
* now has no other vmas using it, so can be freed, we don't
* bother to round floor or end up - the tests don't need that.
*/
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 20:29:15 +00:00
addr &= PMD_MASK;
if (addr < floor) {
addr += PMD_SIZE;
if (!addr)
return;
}
if (ceiling) {
ceiling &= PMD_MASK;
if (!ceiling)
return;
}
if (end - 1 > ceiling - 1)
end -= PMD_SIZE;
if (addr > end - 1)
return;
start = addr;
pgd = pgd_offset(tlb->mm, addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd))
continue;
free_pud_range(tlb, pgd, addr, next, floor, ceiling);
} while (pgd++, addr = next, addr != end);
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 20:29:15 +00:00
}
void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
unsigned long floor, unsigned long ceiling)
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 20:29:15 +00:00
{
while (vma) {
struct vm_area_struct *next = vma->vm_next;
unsigned long addr = vma->vm_start;
[PATCH] mm: unlink vma before pagetables In most places the descent from pgd to pud to pmd to pte holds mmap_sem (exclusively or not), which ensures that free_pgtables cannot be freeing page tables from any level at the same time. But truncation and reverse mapping descend without mmap_sem. No problem: just make sure that a vma is unlinked from its prio_tree (or nonlinear list) and from its anon_vma list, after zapping the vma, but before freeing its page tables. Then neither vmtruncate nor rmap can reach that vma whose page tables are now volatile (nor do they need to reach it, since all its page entries have been zapped by this stage). The i_mmap_lock and anon_vma->lock already serialize this correctly; but the locking hierarchy is such that we cannot take them while holding page_table_lock. Well, we're trying to push that down anyway. So in this patch, move anon_vma_unlink and unlink_file_vma into free_pgtables, at the same time as moving page_table_lock around calls to unmap_vmas. tlb_gather_mmu and tlb_finish_mmu then fall outside the page_table_lock, but we made them preempt_disable and preempt_enable earlier; and a long source audit of all the architectures has shown no problem with removing page_table_lock from them. free_pgtables doesn't need page_table_lock for itself, nor for what it calls; tlb->mm->nr_ptes is usually protected by page_table_lock, but partly by non-exclusive mmap_sem - here it's decremented with exclusive mmap_sem, or mm_users 0. update_hiwater_rss and vm_unacct_memory don't need page_table_lock either. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 01:16:29 +00:00
/*
* Hide vma from rmap and vmtruncate before freeing pgtables
*/
anon_vma_unlink(vma);
unlink_file_vma(vma);
[PATCH] hugepage: Fix hugepage logic in free_pgtables() free_pgtables() has special logic to call hugetlb_free_pgd_range() instead of the normal free_pgd_range() on hugepage VMAs. However, the test it uses to do so is incorrect: it calls is_hugepage_only_range on a hugepage sized range at the start of the vma. is_hugepage_only_range() will return true if the given range has any intersection with a hugepage address region, and in this case the given region need not be hugepage aligned. So, for example, this test can return true if called on, say, a 4k VMA immediately preceding a (nicely aligned) hugepage VMA. At present we get away with this because the powerpc version of hugetlb_free_pgd_range() is just a call to free_pgd_range(). On ia64 (the only other arch with a non-trivial is_hugepage_only_range()) we get away with it for a different reason; the hugepage area is not contiguous with the rest of the user address space, and VMAs are not permitted in between, so the test can't return a false positive there. Nonetheless this should be fixed. We do that in the patch below by replacing the is_hugepage_only_range() test with an explicit test of the VMA using is_vm_hugetlb_page(). This in turn changes behaviour for platforms where is_hugepage_only_range() returns false always (everything except powerpc and ia64). We address this by ensuring that hugetlb_free_pgd_range() is defined to be identical to free_pgd_range() (instead of a no-op) on everything except ia64. Even so, it will prevent some otherwise possible coalescing of calls down to free_pgd_range(). Since this only happens for hugepage VMAs, removing this small optimization seems unlikely to cause any trouble. This patch causes no regressions on the libhugetlbfs testsuite - ppc64 POWER5 (8-way), ppc64 G5 (2-way) and i386 Pentium M (UP). Signed-off-by: David Gibson <dwg@au1.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Acked-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 08:08:57 +00:00
if (is_vm_hugetlb_page(vma)) {
hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 20:29:15 +00:00
floor, next? next->vm_start: ceiling);
} else {
/*
* Optimization: gather nearby vmas into one call down
*/
while (next && next->vm_start <= vma->vm_end + PMD_SIZE
&& !is_vm_hugetlb_page(next)) {
vma = next;
next = vma->vm_next;
[PATCH] mm: unlink vma before pagetables In most places the descent from pgd to pud to pmd to pte holds mmap_sem (exclusively or not), which ensures that free_pgtables cannot be freeing page tables from any level at the same time. But truncation and reverse mapping descend without mmap_sem. No problem: just make sure that a vma is unlinked from its prio_tree (or nonlinear list) and from its anon_vma list, after zapping the vma, but before freeing its page tables. Then neither vmtruncate nor rmap can reach that vma whose page tables are now volatile (nor do they need to reach it, since all its page entries have been zapped by this stage). The i_mmap_lock and anon_vma->lock already serialize this correctly; but the locking hierarchy is such that we cannot take them while holding page_table_lock. Well, we're trying to push that down anyway. So in this patch, move anon_vma_unlink and unlink_file_vma into free_pgtables, at the same time as moving page_table_lock around calls to unmap_vmas. tlb_gather_mmu and tlb_finish_mmu then fall outside the page_table_lock, but we made them preempt_disable and preempt_enable earlier; and a long source audit of all the architectures has shown no problem with removing page_table_lock from them. free_pgtables doesn't need page_table_lock for itself, nor for what it calls; tlb->mm->nr_ptes is usually protected by page_table_lock, but partly by non-exclusive mmap_sem - here it's decremented with exclusive mmap_sem, or mm_users 0. update_hiwater_rss and vm_unacct_memory don't need page_table_lock either. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 01:16:29 +00:00
anon_vma_unlink(vma);
unlink_file_vma(vma);
}
free_pgd_range(tlb, addr, vma->vm_end,
floor, next? next->vm_start: ceiling);
}
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 20:29:15 +00:00
vma = next;
}
}
int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
{
CONFIG_HIGHPTE vs. sub-page page tables. Background: I've implemented 1K/2K page tables for s390. These sub-page page tables are required to properly support the s390 virtualization instruction with KVM. The SIE instruction requires that the page tables have 256 page table entries (pte) followed by 256 page status table entries (pgste). The pgstes are only required if the process is using the SIE instruction. The pgstes are updated by the hardware and by the hypervisor for a number of reasons, one of them is dirty and reference bit tracking. To avoid wasting memory the standard pte table allocation should return 1K/2K (31/64 bit) and 2K/4K if the process is using SIE. Problem: Page size on s390 is 4K, page table size is 1K or 2K. That means the s390 version for pte_alloc_one cannot return a pointer to a struct page. Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one cannot return a pointer to a pte either, since that would require more than 32 bit for the return value of pte_alloc_one (and the pte * would not be accessible since its not kmapped). Solution: The only solution I found to this dilemma is a new typedef: a pgtable_t. For s390 pgtable_t will be a (pte *) - to be introduced with a later patch. For everybody else it will be a (struct page *). The additional problem with the initialization of the ptl lock and the NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and a destructor pgtable_page_dtor. The page table allocation and free functions need to call these two whenever a page table page is allocated or freed. pmd_populate will get a pgtable_t instead of a struct page pointer. To get the pgtable_t back from a pmd entry that has been installed with pmd_populate a new function pmd_pgtable is added. It replaces the pmd_page call in free_pte_range and apply_to_pte_range. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 12:22:04 +00:00
pgtable_t new = pte_alloc_one(mm, address);
if (!new)
return -ENOMEM;
fix SMP data race in pagetable setup vs walking There is a possible data race in the page table walking code. After the split ptlock patches, it actually seems to have been introduced to the core code, but even before that I think it would have impacted some architectures (powerpc and sparc64, at least, walk the page tables without taking locks eg. see find_linux_pte()). The race is as follows: The pte page is allocated, zeroed, and its struct page gets its spinlock initialized. The mm-wide ptl is then taken, and then the pte page is inserted into the pagetables. At this point, the spinlock is not guaranteed to have ordered the previous stores to initialize the pte page with the subsequent store to put it in the page tables. So another Linux page table walker might be walking down (without any locks, because we have split-leaf-ptls), and find that new pte we've inserted. It might try to take the spinlock before the store from the other CPU initializes it. And subsequently it might read a pte_t out before stores from the other CPU have cleared the memory. There are also similar races in higher levels of the page tables. They obviously don't involve the spinlock, but could see uninitialized memory. Arch code and hardware pagetable walkers that walk the pagetables without locks could see similar uninitialized memory problems, regardless of whether split ptes are enabled or not. I prefer to put the barriers in core code, because that's where the higher level logic happens, but the page table accessors are per-arch, and open-coding them everywhere I don't think is an option. I'll put the read-side barriers in alpha arch code for now (other architectures perform data-dependent loads in order). Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-14 04:37:36 +00:00
/*
* Ensure all pte setup (eg. pte page lock and page clearing) are
* visible before the pte is made visible to other CPUs by being
* put into page tables.
*
* The other side of the story is the pointer chasing in the page
* table walking code (when walking the page table without locking;
* ie. most of the time). Fortunately, these data accesses consist
* of a chain of data-dependent loads, meaning most CPUs (alpha
* being the notable exception) will already guarantee loads are
* seen in-order. See the alpha page table accessors for the
* smp_read_barrier_depends() barriers in page table walking code.
*/
smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
spin_lock(&mm->page_table_lock);
CONFIG_HIGHPTE vs. sub-page page tables. Background: I've implemented 1K/2K page tables for s390. These sub-page page tables are required to properly support the s390 virtualization instruction with KVM. The SIE instruction requires that the page tables have 256 page table entries (pte) followed by 256 page status table entries (pgste). The pgstes are only required if the process is using the SIE instruction. The pgstes are updated by the hardware and by the hypervisor for a number of reasons, one of them is dirty and reference bit tracking. To avoid wasting memory the standard pte table allocation should return 1K/2K (31/64 bit) and 2K/4K if the process is using SIE. Problem: Page size on s390 is 4K, page table size is 1K or 2K. That means the s390 version for pte_alloc_one cannot return a pointer to a struct page. Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one cannot return a pointer to a pte either, since that would require more than 32 bit for the return value of pte_alloc_one (and the pte * would not be accessible since its not kmapped). Solution: The only solution I found to this dilemma is a new typedef: a pgtable_t. For s390 pgtable_t will be a (pte *) - to be introduced with a later patch. For everybody else it will be a (struct page *). The additional problem with the initialization of the ptl lock and the NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and a destructor pgtable_page_dtor. The page table allocation and free functions need to call these two whenever a page table page is allocated or freed. pmd_populate will get a pgtable_t instead of a struct page pointer. To get the pgtable_t back from a pmd entry that has been installed with pmd_populate a new function pmd_pgtable is added. It replaces the pmd_page call in free_pte_range and apply_to_pte_range. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 12:22:04 +00:00
if (!pmd_present(*pmd)) { /* Has another populated it ? */
mm->nr_ptes++;
pmd_populate(mm, pmd, new);
CONFIG_HIGHPTE vs. sub-page page tables. Background: I've implemented 1K/2K page tables for s390. These sub-page page tables are required to properly support the s390 virtualization instruction with KVM. The SIE instruction requires that the page tables have 256 page table entries (pte) followed by 256 page status table entries (pgste). The pgstes are only required if the process is using the SIE instruction. The pgstes are updated by the hardware and by the hypervisor for a number of reasons, one of them is dirty and reference bit tracking. To avoid wasting memory the standard pte table allocation should return 1K/2K (31/64 bit) and 2K/4K if the process is using SIE. Problem: Page size on s390 is 4K, page table size is 1K or 2K. That means the s390 version for pte_alloc_one cannot return a pointer to a struct page. Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one cannot return a pointer to a pte either, since that would require more than 32 bit for the return value of pte_alloc_one (and the pte * would not be accessible since its not kmapped). Solution: The only solution I found to this dilemma is a new typedef: a pgtable_t. For s390 pgtable_t will be a (pte *) - to be introduced with a later patch. For everybody else it will be a (struct page *). The additional problem with the initialization of the ptl lock and the NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and a destructor pgtable_page_dtor. The page table allocation and free functions need to call these two whenever a page table page is allocated or freed. pmd_populate will get a pgtable_t instead of a struct page pointer. To get the pgtable_t back from a pmd entry that has been installed with pmd_populate a new function pmd_pgtable is added. It replaces the pmd_page call in free_pte_range and apply_to_pte_range. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 12:22:04 +00:00
new = NULL;
}
spin_unlock(&mm->page_table_lock);
CONFIG_HIGHPTE vs. sub-page page tables. Background: I've implemented 1K/2K page tables for s390. These sub-page page tables are required to properly support the s390 virtualization instruction with KVM. The SIE instruction requires that the page tables have 256 page table entries (pte) followed by 256 page status table entries (pgste). The pgstes are only required if the process is using the SIE instruction. The pgstes are updated by the hardware and by the hypervisor for a number of reasons, one of them is dirty and reference bit tracking. To avoid wasting memory the standard pte table allocation should return 1K/2K (31/64 bit) and 2K/4K if the process is using SIE. Problem: Page size on s390 is 4K, page table size is 1K or 2K. That means the s390 version for pte_alloc_one cannot return a pointer to a struct page. Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one cannot return a pointer to a pte either, since that would require more than 32 bit for the return value of pte_alloc_one (and the pte * would not be accessible since its not kmapped). Solution: The only solution I found to this dilemma is a new typedef: a pgtable_t. For s390 pgtable_t will be a (pte *) - to be introduced with a later patch. For everybody else it will be a (struct page *). The additional problem with the initialization of the ptl lock and the NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and a destructor pgtable_page_dtor. The page table allocation and free functions need to call these two whenever a page table page is allocated or freed. pmd_populate will get a pgtable_t instead of a struct page pointer. To get the pgtable_t back from a pmd entry that has been installed with pmd_populate a new function pmd_pgtable is added. It replaces the pmd_page call in free_pte_range and apply_to_pte_range. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 12:22:04 +00:00
if (new)
pte_free(mm, new);
return 0;
}
int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
{
pte_t *new = pte_alloc_one_kernel(&init_mm, address);
if (!new)
return -ENOMEM;
fix SMP data race in pagetable setup vs walking There is a possible data race in the page table walking code. After the split ptlock patches, it actually seems to have been introduced to the core code, but even before that I think it would have impacted some architectures (powerpc and sparc64, at least, walk the page tables without taking locks eg. see find_linux_pte()). The race is as follows: The pte page is allocated, zeroed, and its struct page gets its spinlock initialized. The mm-wide ptl is then taken, and then the pte page is inserted into the pagetables. At this point, the spinlock is not guaranteed to have ordered the previous stores to initialize the pte page with the subsequent store to put it in the page tables. So another Linux page table walker might be walking down (without any locks, because we have split-leaf-ptls), and find that new pte we've inserted. It might try to take the spinlock before the store from the other CPU initializes it. And subsequently it might read a pte_t out before stores from the other CPU have cleared the memory. There are also similar races in higher levels of the page tables. They obviously don't involve the spinlock, but could see uninitialized memory. Arch code and hardware pagetable walkers that walk the pagetables without locks could see similar uninitialized memory problems, regardless of whether split ptes are enabled or not. I prefer to put the barriers in core code, because that's where the higher level logic happens, but the page table accessors are per-arch, and open-coding them everywhere I don't think is an option. I'll put the read-side barriers in alpha arch code for now (other architectures perform data-dependent loads in order). Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-14 04:37:36 +00:00
smp_wmb(); /* See comment in __pte_alloc */
spin_lock(&init_mm.page_table_lock);
CONFIG_HIGHPTE vs. sub-page page tables. Background: I've implemented 1K/2K page tables for s390. These sub-page page tables are required to properly support the s390 virtualization instruction with KVM. The SIE instruction requires that the page tables have 256 page table entries (pte) followed by 256 page status table entries (pgste). The pgstes are only required if the process is using the SIE instruction. The pgstes are updated by the hardware and by the hypervisor for a number of reasons, one of them is dirty and reference bit tracking. To avoid wasting memory the standard pte table allocation should return 1K/2K (31/64 bit) and 2K/4K if the process is using SIE. Problem: Page size on s390 is 4K, page table size is 1K or 2K. That means the s390 version for pte_alloc_one cannot return a pointer to a struct page. Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one cannot return a pointer to a pte either, since that would require more than 32 bit for the return value of pte_alloc_one (and the pte * would not be accessible since its not kmapped). Solution: The only solution I found to this dilemma is a new typedef: a pgtable_t. For s390 pgtable_t will be a (pte *) - to be introduced with a later patch. For everybody else it will be a (struct page *). The additional problem with the initialization of the ptl lock and the NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and a destructor pgtable_page_dtor. The page table allocation and free functions need to call these two whenever a page table page is allocated or freed. pmd_populate will get a pgtable_t instead of a struct page pointer. To get the pgtable_t back from a pmd entry that has been installed with pmd_populate a new function pmd_pgtable is added. It replaces the pmd_page call in free_pte_range and apply_to_pte_range. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 12:22:04 +00:00
if (!pmd_present(*pmd)) { /* Has another populated it ? */
pmd_populate_kernel(&init_mm, pmd, new);
CONFIG_HIGHPTE vs. sub-page page tables. Background: I've implemented 1K/2K page tables for s390. These sub-page page tables are required to properly support the s390 virtualization instruction with KVM. The SIE instruction requires that the page tables have 256 page table entries (pte) followed by 256 page status table entries (pgste). The pgstes are only required if the process is using the SIE instruction. The pgstes are updated by the hardware and by the hypervisor for a number of reasons, one of them is dirty and reference bit tracking. To avoid wasting memory the standard pte table allocation should return 1K/2K (31/64 bit) and 2K/4K if the process is using SIE. Problem: Page size on s390 is 4K, page table size is 1K or 2K. That means the s390 version for pte_alloc_one cannot return a pointer to a struct page. Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one cannot return a pointer to a pte either, since that would require more than 32 bit for the return value of pte_alloc_one (and the pte * would not be accessible since its not kmapped). Solution: The only solution I found to this dilemma is a new typedef: a pgtable_t. For s390 pgtable_t will be a (pte *) - to be introduced with a later patch. For everybody else it will be a (struct page *). The additional problem with the initialization of the ptl lock and the NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and a destructor pgtable_page_dtor. The page table allocation and free functions need to call these two whenever a page table page is allocated or freed. pmd_populate will get a pgtable_t instead of a struct page pointer. To get the pgtable_t back from a pmd entry that has been installed with pmd_populate a new function pmd_pgtable is added. It replaces the pmd_page call in free_pte_range and apply_to_pte_range. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 12:22:04 +00:00
new = NULL;
}
spin_unlock(&init_mm.page_table_lock);
CONFIG_HIGHPTE vs. sub-page page tables. Background: I've implemented 1K/2K page tables for s390. These sub-page page tables are required to properly support the s390 virtualization instruction with KVM. The SIE instruction requires that the page tables have 256 page table entries (pte) followed by 256 page status table entries (pgste). The pgstes are only required if the process is using the SIE instruction. The pgstes are updated by the hardware and by the hypervisor for a number of reasons, one of them is dirty and reference bit tracking. To avoid wasting memory the standard pte table allocation should return 1K/2K (31/64 bit) and 2K/4K if the process is using SIE. Problem: Page size on s390 is 4K, page table size is 1K or 2K. That means the s390 version for pte_alloc_one cannot return a pointer to a struct page. Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one cannot return a pointer to a pte either, since that would require more than 32 bit for the return value of pte_alloc_one (and the pte * would not be accessible since its not kmapped). Solution: The only solution I found to this dilemma is a new typedef: a pgtable_t. For s390 pgtable_t will be a (pte *) - to be introduced with a later patch. For everybody else it will be a (struct page *). The additional problem with the initialization of the ptl lock and the NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and a destructor pgtable_page_dtor. The page table allocation and free functions need to call these two whenever a page table page is allocated or freed. pmd_populate will get a pgtable_t instead of a struct page pointer. To get the pgtable_t back from a pmd entry that has been installed with pmd_populate a new function pmd_pgtable is added. It replaces the pmd_page call in free_pte_range and apply_to_pte_range. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 12:22:04 +00:00
if (new)
pte_free_kernel(&init_mm, new);
return 0;
}
static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
{
if (file_rss)
add_mm_counter(mm, file_rss, file_rss);
if (anon_rss)
add_mm_counter(mm, anon_rss, anon_rss);
}
2005-10-30 01:16:12 +00:00
/*
* This function is called to print an error when a bad pte
* is found. For example, we might have a PFN-mapped pte in
* a region that doesn't allow it.
2005-10-30 01:16:12 +00:00
*
* The calling function must still handle the error.
*/
badpage: replace page_remove_rmap Eeek and BUG Now that bad pages are kept out of circulation, there is no need for the infamous page_remove_rmap() BUG() - once that page is freed, its negative mapcount will issue a "Bad page state" message and the page won't be freed. Removing the BUG() allows more info, on subsequent pages, to be gathered. We do have more info about the page at this point than bad_page() can know - notably, what the pmd is, which might pinpoint something like low 64kB corruption - but page_remove_rmap() isn't given the address to find that. In practice, there is only one call to page_remove_rmap() which has ever reported anything, that from zap_pte_range() (usually on exit, sometimes on munmap). It has all the info, so remove page_remove_rmap()'s "Eeek" message and leave it all to zap_pte_range(). mm/memory.c already has a hardly used print_bad_pte() function, showing some of the appropriate info: extend it to show what we want for the rmap case: pte info, page info (when there is a page) and vma info to compare. zap_pte_range() already knows the pmd, but print_bad_pte() is easier to use if it works that out for itself. Some of this info is also shown in bad_page()'s "Bad page state" message. Keep them separate, but adjust them to match each other as far as possible. Say "Bad page map" in print_bad_pte(), and add a TAINT_BAD_PAGE there too. print_bad_pte() show current->comm unconditionally (though it should get repeated in the usually irrelevant stack trace): sorry, I misled Nick Piggin to make it conditional on vm_mm == current->mm, but current->mm is already NULL in the exit case. Usually current->comm is good, though exceptionally it may not be that of the mm (when "swapoff" for example). Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:40:08 +00:00
static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
pte_t pte, struct page *page)
2005-10-30 01:16:12 +00:00
{
badpage: replace page_remove_rmap Eeek and BUG Now that bad pages are kept out of circulation, there is no need for the infamous page_remove_rmap() BUG() - once that page is freed, its negative mapcount will issue a "Bad page state" message and the page won't be freed. Removing the BUG() allows more info, on subsequent pages, to be gathered. We do have more info about the page at this point than bad_page() can know - notably, what the pmd is, which might pinpoint something like low 64kB corruption - but page_remove_rmap() isn't given the address to find that. In practice, there is only one call to page_remove_rmap() which has ever reported anything, that from zap_pte_range() (usually on exit, sometimes on munmap). It has all the info, so remove page_remove_rmap()'s "Eeek" message and leave it all to zap_pte_range(). mm/memory.c already has a hardly used print_bad_pte() function, showing some of the appropriate info: extend it to show what we want for the rmap case: pte info, page info (when there is a page) and vma info to compare. zap_pte_range() already knows the pmd, but print_bad_pte() is easier to use if it works that out for itself. Some of this info is also shown in bad_page()'s "Bad page state" message. Keep them separate, but adjust them to match each other as far as possible. Say "Bad page map" in print_bad_pte(), and add a TAINT_BAD_PAGE there too. print_bad_pte() show current->comm unconditionally (though it should get repeated in the usually irrelevant stack trace): sorry, I misled Nick Piggin to make it conditional on vm_mm == current->mm, but current->mm is already NULL in the exit case. Usually current->comm is good, though exceptionally it may not be that of the mm (when "swapoff" for example). Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:40:08 +00:00
pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
pud_t *pud = pud_offset(pgd, addr);
pmd_t *pmd = pmd_offset(pud, addr);
struct address_space *mapping;
pgoff_t index;
static unsigned long resume;
static unsigned long nr_shown;
static unsigned long nr_unshown;
/*
* Allow a burst of 60 reports, then keep quiet for that minute;
* or allow a steady drip of one report per second.
*/
if (nr_shown == 60) {
if (time_before(jiffies, resume)) {
nr_unshown++;
return;
}
if (nr_unshown) {
printk(KERN_ALERT
"BUG: Bad page map: %lu messages suppressed\n",
nr_unshown);
nr_unshown = 0;
}
nr_shown = 0;
}
if (nr_shown++ == 0)
resume = jiffies + 60 * HZ;
badpage: replace page_remove_rmap Eeek and BUG Now that bad pages are kept out of circulation, there is no need for the infamous page_remove_rmap() BUG() - once that page is freed, its negative mapcount will issue a "Bad page state" message and the page won't be freed. Removing the BUG() allows more info, on subsequent pages, to be gathered. We do have more info about the page at this point than bad_page() can know - notably, what the pmd is, which might pinpoint something like low 64kB corruption - but page_remove_rmap() isn't given the address to find that. In practice, there is only one call to page_remove_rmap() which has ever reported anything, that from zap_pte_range() (usually on exit, sometimes on munmap). It has all the info, so remove page_remove_rmap()'s "Eeek" message and leave it all to zap_pte_range(). mm/memory.c already has a hardly used print_bad_pte() function, showing some of the appropriate info: extend it to show what we want for the rmap case: pte info, page info (when there is a page) and vma info to compare. zap_pte_range() already knows the pmd, but print_bad_pte() is easier to use if it works that out for itself. Some of this info is also shown in bad_page()'s "Bad page state" message. Keep them separate, but adjust them to match each other as far as possible. Say "Bad page map" in print_bad_pte(), and add a TAINT_BAD_PAGE there too. print_bad_pte() show current->comm unconditionally (though it should get repeated in the usually irrelevant stack trace): sorry, I misled Nick Piggin to make it conditional on vm_mm == current->mm, but current->mm is already NULL in the exit case. Usually current->comm is good, though exceptionally it may not be that of the mm (when "swapoff" for example). Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:40:08 +00:00
mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
index = linear_page_index(vma, addr);
printk(KERN_ALERT
"BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
badpage: replace page_remove_rmap Eeek and BUG Now that bad pages are kept out of circulation, there is no need for the infamous page_remove_rmap() BUG() - once that page is freed, its negative mapcount will issue a "Bad page state" message and the page won't be freed. Removing the BUG() allows more info, on subsequent pages, to be gathered. We do have more info about the page at this point than bad_page() can know - notably, what the pmd is, which might pinpoint something like low 64kB corruption - but page_remove_rmap() isn't given the address to find that. In practice, there is only one call to page_remove_rmap() which has ever reported anything, that from zap_pte_range() (usually on exit, sometimes on munmap). It has all the info, so remove page_remove_rmap()'s "Eeek" message and leave it all to zap_pte_range(). mm/memory.c already has a hardly used print_bad_pte() function, showing some of the appropriate info: extend it to show what we want for the rmap case: pte info, page info (when there is a page) and vma info to compare. zap_pte_range() already knows the pmd, but print_bad_pte() is easier to use if it works that out for itself. Some of this info is also shown in bad_page()'s "Bad page state" message. Keep them separate, but adjust them to match each other as far as possible. Say "Bad page map" in print_bad_pte(), and add a TAINT_BAD_PAGE there too. print_bad_pte() show current->comm unconditionally (though it should get repeated in the usually irrelevant stack trace): sorry, I misled Nick Piggin to make it conditional on vm_mm == current->mm, but current->mm is already NULL in the exit case. Usually current->comm is good, though exceptionally it may not be that of the mm (when "swapoff" for example). Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:40:08 +00:00
current->comm,
(long long)pte_val(pte), (long long)pmd_val(*pmd));
if (page) {
printk(KERN_ALERT
badpage: replace page_remove_rmap Eeek and BUG Now that bad pages are kept out of circulation, there is no need for the infamous page_remove_rmap() BUG() - once that page is freed, its negative mapcount will issue a "Bad page state" message and the page won't be freed. Removing the BUG() allows more info, on subsequent pages, to be gathered. We do have more info about the page at this point than bad_page() can know - notably, what the pmd is, which might pinpoint something like low 64kB corruption - but page_remove_rmap() isn't given the address to find that. In practice, there is only one call to page_remove_rmap() which has ever reported anything, that from zap_pte_range() (usually on exit, sometimes on munmap). It has all the info, so remove page_remove_rmap()'s "Eeek" message and leave it all to zap_pte_range(). mm/memory.c already has a hardly used print_bad_pte() function, showing some of the appropriate info: extend it to show what we want for the rmap case: pte info, page info (when there is a page) and vma info to compare. zap_pte_range() already knows the pmd, but print_bad_pte() is easier to use if it works that out for itself. Some of this info is also shown in bad_page()'s "Bad page state" message. Keep them separate, but adjust them to match each other as far as possible. Say "Bad page map" in print_bad_pte(), and add a TAINT_BAD_PAGE there too. print_bad_pte() show current->comm unconditionally (though it should get repeated in the usually irrelevant stack trace): sorry, I misled Nick Piggin to make it conditional on vm_mm == current->mm, but current->mm is already NULL in the exit case. Usually current->comm is good, though exceptionally it may not be that of the mm (when "swapoff" for example). Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:40:08 +00:00
"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
page, (void *)page->flags, page_count(page),
page_mapcount(page), page->mapping, page->index);
}
printk(KERN_ALERT
badpage: replace page_remove_rmap Eeek and BUG Now that bad pages are kept out of circulation, there is no need for the infamous page_remove_rmap() BUG() - once that page is freed, its negative mapcount will issue a "Bad page state" message and the page won't be freed. Removing the BUG() allows more info, on subsequent pages, to be gathered. We do have more info about the page at this point than bad_page() can know - notably, what the pmd is, which might pinpoint something like low 64kB corruption - but page_remove_rmap() isn't given the address to find that. In practice, there is only one call to page_remove_rmap() which has ever reported anything, that from zap_pte_range() (usually on exit, sometimes on munmap). It has all the info, so remove page_remove_rmap()'s "Eeek" message and leave it all to zap_pte_range(). mm/memory.c already has a hardly used print_bad_pte() function, showing some of the appropriate info: extend it to show what we want for the rmap case: pte info, page info (when there is a page) and vma info to compare. zap_pte_range() already knows the pmd, but print_bad_pte() is easier to use if it works that out for itself. Some of this info is also shown in bad_page()'s "Bad page state" message. Keep them separate, but adjust them to match each other as far as possible. Say "Bad page map" in print_bad_pte(), and add a TAINT_BAD_PAGE there too. print_bad_pte() show current->comm unconditionally (though it should get repeated in the usually irrelevant stack trace): sorry, I misled Nick Piggin to make it conditional on vm_mm == current->mm, but current->mm is already NULL in the exit case. Usually current->comm is good, though exceptionally it may not be that of the mm (when "swapoff" for example). Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:40:08 +00:00
"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
/*
* Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
*/
if (vma->vm_ops)
print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
badpage: replace page_remove_rmap Eeek and BUG Now that bad pages are kept out of circulation, there is no need for the infamous page_remove_rmap() BUG() - once that page is freed, its negative mapcount will issue a "Bad page state" message and the page won't be freed. Removing the BUG() allows more info, on subsequent pages, to be gathered. We do have more info about the page at this point than bad_page() can know - notably, what the pmd is, which might pinpoint something like low 64kB corruption - but page_remove_rmap() isn't given the address to find that. In practice, there is only one call to page_remove_rmap() which has ever reported anything, that from zap_pte_range() (usually on exit, sometimes on munmap). It has all the info, so remove page_remove_rmap()'s "Eeek" message and leave it all to zap_pte_range(). mm/memory.c already has a hardly used print_bad_pte() function, showing some of the appropriate info: extend it to show what we want for the rmap case: pte info, page info (when there is a page) and vma info to compare. zap_pte_range() already knows the pmd, but print_bad_pte() is easier to use if it works that out for itself. Some of this info is also shown in bad_page()'s "Bad page state" message. Keep them separate, but adjust them to match each other as far as possible. Say "Bad page map" in print_bad_pte(), and add a TAINT_BAD_PAGE there too. print_bad_pte() show current->comm unconditionally (though it should get repeated in the usually irrelevant stack trace): sorry, I misled Nick Piggin to make it conditional on vm_mm == current->mm, but current->mm is already NULL in the exit case. Usually current->comm is good, though exceptionally it may not be that of the mm (when "swapoff" for example). Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:40:08 +00:00
(unsigned long)vma->vm_ops->fault);
if (vma->vm_file && vma->vm_file->f_op)
print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
badpage: replace page_remove_rmap Eeek and BUG Now that bad pages are kept out of circulation, there is no need for the infamous page_remove_rmap() BUG() - once that page is freed, its negative mapcount will issue a "Bad page state" message and the page won't be freed. Removing the BUG() allows more info, on subsequent pages, to be gathered. We do have more info about the page at this point than bad_page() can know - notably, what the pmd is, which might pinpoint something like low 64kB corruption - but page_remove_rmap() isn't given the address to find that. In practice, there is only one call to page_remove_rmap() which has ever reported anything, that from zap_pte_range() (usually on exit, sometimes on munmap). It has all the info, so remove page_remove_rmap()'s "Eeek" message and leave it all to zap_pte_range(). mm/memory.c already has a hardly used print_bad_pte() function, showing some of the appropriate info: extend it to show what we want for the rmap case: pte info, page info (when there is a page) and vma info to compare. zap_pte_range() already knows the pmd, but print_bad_pte() is easier to use if it works that out for itself. Some of this info is also shown in bad_page()'s "Bad page state" message. Keep them separate, but adjust them to match each other as far as possible. Say "Bad page map" in print_bad_pte(), and add a TAINT_BAD_PAGE there too. print_bad_pte() show current->comm unconditionally (though it should get repeated in the usually irrelevant stack trace): sorry, I misled Nick Piggin to make it conditional on vm_mm == current->mm, but current->mm is already NULL in the exit case. Usually current->comm is good, though exceptionally it may not be that of the mm (when "swapoff" for example). Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:40:08 +00:00
(unsigned long)vma->vm_file->f_op->mmap);
2005-10-30 01:16:12 +00:00
dump_stack();
badpage: replace page_remove_rmap Eeek and BUG Now that bad pages are kept out of circulation, there is no need for the infamous page_remove_rmap() BUG() - once that page is freed, its negative mapcount will issue a "Bad page state" message and the page won't be freed. Removing the BUG() allows more info, on subsequent pages, to be gathered. We do have more info about the page at this point than bad_page() can know - notably, what the pmd is, which might pinpoint something like low 64kB corruption - but page_remove_rmap() isn't given the address to find that. In practice, there is only one call to page_remove_rmap() which has ever reported anything, that from zap_pte_range() (usually on exit, sometimes on munmap). It has all the info, so remove page_remove_rmap()'s "Eeek" message and leave it all to zap_pte_range(). mm/memory.c already has a hardly used print_bad_pte() function, showing some of the appropriate info: extend it to show what we want for the rmap case: pte info, page info (when there is a page) and vma info to compare. zap_pte_range() already knows the pmd, but print_bad_pte() is easier to use if it works that out for itself. Some of this info is also shown in bad_page()'s "Bad page state" message. Keep them separate, but adjust them to match each other as far as possible. Say "Bad page map" in print_bad_pte(), and add a TAINT_BAD_PAGE there too. print_bad_pte() show current->comm unconditionally (though it should get repeated in the usually irrelevant stack trace): sorry, I misled Nick Piggin to make it conditional on vm_mm == current->mm, but current->mm is already NULL in the exit case. Usually current->comm is good, though exceptionally it may not be that of the mm (when "swapoff" for example). Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:40:08 +00:00
add_taint(TAINT_BAD_PAGE);
2005-10-30 01:16:12 +00:00
}
static inline int is_cow_mapping(unsigned int flags)
{
return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
}
#ifndef is_zero_pfn
static inline int is_zero_pfn(unsigned long pfn)
{
return pfn == zero_pfn;
}
#endif
#ifndef my_zero_pfn
static inline unsigned long my_zero_pfn(unsigned long addr)
{
return zero_pfn;
}
#endif
/*
mm: introduce pte_special pte bit s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory model (which is more dynamic than most). Instead, they had proposed to implement it with an additional path through vm_normal_page(), using a bit in the pte to determine whether or not the page should be refcounted: vm_normal_page() { ... if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; #else if (!pfn_valid(pfn)) return NULL; #endif goto out; } ... } This is fine, however if we are allowed to use a bit in the pte to determine refcountedness, we can use that to _completely_ replace all the vma based schemes. So instead of adding more cases to the already complex vma-based scheme, we can have a clearly seperate and simple pte-based scheme (and get slightly better code generation in the process): vm_normal_page() { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; return pte_page(pte); #else ... #endif } And finally, we may rather make this concept usable by any architecture rather than making it s390 only, so implement a new type of pte state for this. Unfortunately the old vma based code must stay, because some architectures may not be able to spare pte bits. This makes vm_normal_page a little bit more ugly than we would like, but the 2 cases are clearly seperate. So introduce a pte_special pte state, and use it in mm/memory.c. It is currently a noop for all architectures, so this doesn't actually result in any compiled code changes to mm/memory.o. BTW: I haven't put vm_normal_page() into arch code as-per an earlier suggestion. The reason is that, regardless of where vm_normal_page is actually implemented, the *abstraction* is still exactly the same. Also, while it depends on whether the architecture has pte_special or not, that is the only two possible cases, and it really isn't an arch specific function -- the role of the arch code should be to provide primitive functions and accessors with which to build the core code; pte_special does that. We do not want architectures to know or care about vm_normal_page itself, and we definitely don't want them being able to invent something new there out of sight of mm/ code. If we made vm_normal_page an arch function, then we have to make vm_insert_mixed (next patch) an arch function too. So I don't think moving it to arch code fundamentally improves any abstractions, while it does practically make the code more difficult to follow, for both mm and arch developers, and easier to misuse. [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:13:00 +00:00
* vm_normal_page -- This function gets the "struct page" associated with a pte.
*
mm: introduce pte_special pte bit s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory model (which is more dynamic than most). Instead, they had proposed to implement it with an additional path through vm_normal_page(), using a bit in the pte to determine whether or not the page should be refcounted: vm_normal_page() { ... if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; #else if (!pfn_valid(pfn)) return NULL; #endif goto out; } ... } This is fine, however if we are allowed to use a bit in the pte to determine refcountedness, we can use that to _completely_ replace all the vma based schemes. So instead of adding more cases to the already complex vma-based scheme, we can have a clearly seperate and simple pte-based scheme (and get slightly better code generation in the process): vm_normal_page() { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; return pte_page(pte); #else ... #endif } And finally, we may rather make this concept usable by any architecture rather than making it s390 only, so implement a new type of pte state for this. Unfortunately the old vma based code must stay, because some architectures may not be able to spare pte bits. This makes vm_normal_page a little bit more ugly than we would like, but the 2 cases are clearly seperate. So introduce a pte_special pte state, and use it in mm/memory.c. It is currently a noop for all architectures, so this doesn't actually result in any compiled code changes to mm/memory.o. BTW: I haven't put vm_normal_page() into arch code as-per an earlier suggestion. The reason is that, regardless of where vm_normal_page is actually implemented, the *abstraction* is still exactly the same. Also, while it depends on whether the architecture has pte_special or not, that is the only two possible cases, and it really isn't an arch specific function -- the role of the arch code should be to provide primitive functions and accessors with which to build the core code; pte_special does that. We do not want architectures to know or care about vm_normal_page itself, and we definitely don't want them being able to invent something new there out of sight of mm/ code. If we made vm_normal_page an arch function, then we have to make vm_insert_mixed (next patch) an arch function too. So I don't think moving it to arch code fundamentally improves any abstractions, while it does practically make the code more difficult to follow, for both mm and arch developers, and easier to misuse. [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:13:00 +00:00
* "Special" mappings do not wish to be associated with a "struct page" (either
* it doesn't exist, or it exists but they don't want to touch it). In this
* case, NULL is returned here. "Normal" mappings do have a struct page.
mm: introduce VM_MIXEDMAP This series introduces some important infrastructure work. The overall result is that: 1. We now support XIP backed filesystems using memory that have no struct page allocated to them. And patches 6 and 7 actually implement this for s390. This is pretty important in a number of cases. As far as I understand, in the case of virtualisation (eg. s390), each guest may mount a readonly copy of the same filesystem (eg. the distro). Currently, guests need to allocate struct pages for this image. So if you have 100 guests, you already need to allocate more memory for the struct pages than the size of the image. I think. (Carsten?) For other (eg. embedded) systems, you may have a very large non- volatile filesystem. If you have to have struct pages for this, then your RAM consumption will go up proportionally to fs size. Even though it is just a small proportion, the RAM can be much more costly eg in terms of power, so every KB less that Linux uses makes it more attractive to a lot of these guys. 2. VM_MIXEDMAP allows us to support mappings where you actually do want to refcount _some_ pages in the mapping, but not others, and support COW on arbitrary (non-linear) mappings. Jared needs this for his NVRAM filesystem in progress. Future iterations of this filesystem will most likely want to migrate pages between pagecache and XIP backing, which is where the requirement for mixed (some refcounted, some not) comes from. 3. pte_special also has a peripheral usage that I need for my lockless get_user_pages patch. That was shown to speed up "oltp" on db2 by 10% on a 2 socket system, which is kind of significant because they scrounge for months to try to find 0.1% improvement on these workloads. I'm hoping we might finally be faster than AIX on pSeries with this :). My reference to lockless get_user_pages is not meant to justify this patchset (which doesn't include lockless gup), but just to show that pte_special is not some s390 specific thing that should be hidden in arch code or xip code: I definitely want to use it on at least x86 and powerpc as well. This patch: Introduce a new type of mapping, VM_MIXEDMAP. This is unlike VM_PFNMAP in that it can support COW mappings of arbitrary ranges including ranges without struct page *and* ranges with a struct page that we actually want to refcount (PFNMAP can only support COW in those cases where the un-COW-ed translations are mapped linearly in the virtual address, and can only support non refcounted ranges). VM_MIXEDMAP achieves this by refcounting all pfn_valid pages, and not refcounting !pfn_valid pages (which is not an option for VM_PFNMAP, because it needs to avoid refcounting pfn_valid pages eg. for /dev/mem mappings). Signed-off-by: Jared Hulbert <jaredeh@gmail.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:12:58 +00:00
*
mm: introduce pte_special pte bit s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory model (which is more dynamic than most). Instead, they had proposed to implement it with an additional path through vm_normal_page(), using a bit in the pte to determine whether or not the page should be refcounted: vm_normal_page() { ... if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; #else if (!pfn_valid(pfn)) return NULL; #endif goto out; } ... } This is fine, however if we are allowed to use a bit in the pte to determine refcountedness, we can use that to _completely_ replace all the vma based schemes. So instead of adding more cases to the already complex vma-based scheme, we can have a clearly seperate and simple pte-based scheme (and get slightly better code generation in the process): vm_normal_page() { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; return pte_page(pte); #else ... #endif } And finally, we may rather make this concept usable by any architecture rather than making it s390 only, so implement a new type of pte state for this. Unfortunately the old vma based code must stay, because some architectures may not be able to spare pte bits. This makes vm_normal_page a little bit more ugly than we would like, but the 2 cases are clearly seperate. So introduce a pte_special pte state, and use it in mm/memory.c. It is currently a noop for all architectures, so this doesn't actually result in any compiled code changes to mm/memory.o. BTW: I haven't put vm_normal_page() into arch code as-per an earlier suggestion. The reason is that, regardless of where vm_normal_page is actually implemented, the *abstraction* is still exactly the same. Also, while it depends on whether the architecture has pte_special or not, that is the only two possible cases, and it really isn't an arch specific function -- the role of the arch code should be to provide primitive functions and accessors with which to build the core code; pte_special does that. We do not want architectures to know or care about vm_normal_page itself, and we definitely don't want them being able to invent something new there out of sight of mm/ code. If we made vm_normal_page an arch function, then we have to make vm_insert_mixed (next patch) an arch function too. So I don't think moving it to arch code fundamentally improves any abstractions, while it does practically make the code more difficult to follow, for both mm and arch developers, and easier to misuse. [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:13:00 +00:00
* There are 2 broad cases. Firstly, an architecture may define a pte_special()
* pte bit, in which case this function is trivial. Secondly, an architecture
* may not have a spare pte bit, which requires a more complicated scheme,
* described below.
*
* A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
* special mapping (even if there are underlying and valid "struct pages").
* COWed pages of a VM_PFNMAP are always normal.
*
mm: introduce VM_MIXEDMAP This series introduces some important infrastructure work. The overall result is that: 1. We now support XIP backed filesystems using memory that have no struct page allocated to them. And patches 6 and 7 actually implement this for s390. This is pretty important in a number of cases. As far as I understand, in the case of virtualisation (eg. s390), each guest may mount a readonly copy of the same filesystem (eg. the distro). Currently, guests need to allocate struct pages for this image. So if you have 100 guests, you already need to allocate more memory for the struct pages than the size of the image. I think. (Carsten?) For other (eg. embedded) systems, you may have a very large non- volatile filesystem. If you have to have struct pages for this, then your RAM consumption will go up proportionally to fs size. Even though it is just a small proportion, the RAM can be much more costly eg in terms of power, so every KB less that Linux uses makes it more attractive to a lot of these guys. 2. VM_MIXEDMAP allows us to support mappings where you actually do want to refcount _some_ pages in the mapping, but not others, and support COW on arbitrary (non-linear) mappings. Jared needs this for his NVRAM filesystem in progress. Future iterations of this filesystem will most likely want to migrate pages between pagecache and XIP backing, which is where the requirement for mixed (some refcounted, some not) comes from. 3. pte_special also has a peripheral usage that I need for my lockless get_user_pages patch. That was shown to speed up "oltp" on db2 by 10% on a 2 socket system, which is kind of significant because they scrounge for months to try to find 0.1% improvement on these workloads. I'm hoping we might finally be faster than AIX on pSeries with this :). My reference to lockless get_user_pages is not meant to justify this patchset (which doesn't include lockless gup), but just to show that pte_special is not some s390 specific thing that should be hidden in arch code or xip code: I definitely want to use it on at least x86 and powerpc as well. This patch: Introduce a new type of mapping, VM_MIXEDMAP. This is unlike VM_PFNMAP in that it can support COW mappings of arbitrary ranges including ranges without struct page *and* ranges with a struct page that we actually want to refcount (PFNMAP can only support COW in those cases where the un-COW-ed translations are mapped linearly in the virtual address, and can only support non refcounted ranges). VM_MIXEDMAP achieves this by refcounting all pfn_valid pages, and not refcounting !pfn_valid pages (which is not an option for VM_PFNMAP, because it needs to avoid refcounting pfn_valid pages eg. for /dev/mem mappings). Signed-off-by: Jared Hulbert <jaredeh@gmail.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:12:58 +00:00
* The way we recognize COWed pages within VM_PFNMAP mappings is through the
* rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
mm: introduce pte_special pte bit s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory model (which is more dynamic than most). Instead, they had proposed to implement it with an additional path through vm_normal_page(), using a bit in the pte to determine whether or not the page should be refcounted: vm_normal_page() { ... if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; #else if (!pfn_valid(pfn)) return NULL; #endif goto out; } ... } This is fine, however if we are allowed to use a bit in the pte to determine refcountedness, we can use that to _completely_ replace all the vma based schemes. So instead of adding more cases to the already complex vma-based scheme, we can have a clearly seperate and simple pte-based scheme (and get slightly better code generation in the process): vm_normal_page() { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; return pte_page(pte); #else ... #endif } And finally, we may rather make this concept usable by any architecture rather than making it s390 only, so implement a new type of pte state for this. Unfortunately the old vma based code must stay, because some architectures may not be able to spare pte bits. This makes vm_normal_page a little bit more ugly than we would like, but the 2 cases are clearly seperate. So introduce a pte_special pte state, and use it in mm/memory.c. It is currently a noop for all architectures, so this doesn't actually result in any compiled code changes to mm/memory.o. BTW: I haven't put vm_normal_page() into arch code as-per an earlier suggestion. The reason is that, regardless of where vm_normal_page is actually implemented, the *abstraction* is still exactly the same. Also, while it depends on whether the architecture has pte_special or not, that is the only two possible cases, and it really isn't an arch specific function -- the role of the arch code should be to provide primitive functions and accessors with which to build the core code; pte_special does that. We do not want architectures to know or care about vm_normal_page itself, and we definitely don't want them being able to invent something new there out of sight of mm/ code. If we made vm_normal_page an arch function, then we have to make vm_insert_mixed (next patch) an arch function too. So I don't think moving it to arch code fundamentally improves any abstractions, while it does practically make the code more difficult to follow, for both mm and arch developers, and easier to misuse. [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:13:00 +00:00
* set, and the vm_pgoff will point to the first PFN mapped: thus every special
* mapping will always honor the rule
*
* pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
*
mm: introduce pte_special pte bit s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory model (which is more dynamic than most). Instead, they had proposed to implement it with an additional path through vm_normal_page(), using a bit in the pte to determine whether or not the page should be refcounted: vm_normal_page() { ... if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; #else if (!pfn_valid(pfn)) return NULL; #endif goto out; } ... } This is fine, however if we are allowed to use a bit in the pte to determine refcountedness, we can use that to _completely_ replace all the vma based schemes. So instead of adding more cases to the already complex vma-based scheme, we can have a clearly seperate and simple pte-based scheme (and get slightly better code generation in the process): vm_normal_page() { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; return pte_page(pte); #else ... #endif } And finally, we may rather make this concept usable by any architecture rather than making it s390 only, so implement a new type of pte state for this. Unfortunately the old vma based code must stay, because some architectures may not be able to spare pte bits. This makes vm_normal_page a little bit more ugly than we would like, but the 2 cases are clearly seperate. So introduce a pte_special pte state, and use it in mm/memory.c. It is currently a noop for all architectures, so this doesn't actually result in any compiled code changes to mm/memory.o. BTW: I haven't put vm_normal_page() into arch code as-per an earlier suggestion. The reason is that, regardless of where vm_normal_page is actually implemented, the *abstraction* is still exactly the same. Also, while it depends on whether the architecture has pte_special or not, that is the only two possible cases, and it really isn't an arch specific function -- the role of the arch code should be to provide primitive functions and accessors with which to build the core code; pte_special does that. We do not want architectures to know or care about vm_normal_page itself, and we definitely don't want them being able to invent something new there out of sight of mm/ code. If we made vm_normal_page an arch function, then we have to make vm_insert_mixed (next patch) an arch function too. So I don't think moving it to arch code fundamentally improves any abstractions, while it does practically make the code more difficult to follow, for both mm and arch developers, and easier to misuse. [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:13:00 +00:00
* And for normal mappings this is false.
*
* This restricts such mappings to be a linear translation from virtual address
* to pfn. To get around this restriction, we allow arbitrary mappings so long
* as the vma is not a COW mapping; in that case, we know that all ptes are
* special (because none can have been COWed).
mm: introduce VM_MIXEDMAP This series introduces some important infrastructure work. The overall result is that: 1. We now support XIP backed filesystems using memory that have no struct page allocated to them. And patches 6 and 7 actually implement this for s390. This is pretty important in a number of cases. As far as I understand, in the case of virtualisation (eg. s390), each guest may mount a readonly copy of the same filesystem (eg. the distro). Currently, guests need to allocate struct pages for this image. So if you have 100 guests, you already need to allocate more memory for the struct pages than the size of the image. I think. (Carsten?) For other (eg. embedded) systems, you may have a very large non- volatile filesystem. If you have to have struct pages for this, then your RAM consumption will go up proportionally to fs size. Even though it is just a small proportion, the RAM can be much more costly eg in terms of power, so every KB less that Linux uses makes it more attractive to a lot of these guys. 2. VM_MIXEDMAP allows us to support mappings where you actually do want to refcount _some_ pages in the mapping, but not others, and support COW on arbitrary (non-linear) mappings. Jared needs this for his NVRAM filesystem in progress. Future iterations of this filesystem will most likely want to migrate pages between pagecache and XIP backing, which is where the requirement for mixed (some refcounted, some not) comes from. 3. pte_special also has a peripheral usage that I need for my lockless get_user_pages patch. That was shown to speed up "oltp" on db2 by 10% on a 2 socket system, which is kind of significant because they scrounge for months to try to find 0.1% improvement on these workloads. I'm hoping we might finally be faster than AIX on pSeries with this :). My reference to lockless get_user_pages is not meant to justify this patchset (which doesn't include lockless gup), but just to show that pte_special is not some s390 specific thing that should be hidden in arch code or xip code: I definitely want to use it on at least x86 and powerpc as well. This patch: Introduce a new type of mapping, VM_MIXEDMAP. This is unlike VM_PFNMAP in that it can support COW mappings of arbitrary ranges including ranges without struct page *and* ranges with a struct page that we actually want to refcount (PFNMAP can only support COW in those cases where the un-COW-ed translations are mapped linearly in the virtual address, and can only support non refcounted ranges). VM_MIXEDMAP achieves this by refcounting all pfn_valid pages, and not refcounting !pfn_valid pages (which is not an option for VM_PFNMAP, because it needs to avoid refcounting pfn_valid pages eg. for /dev/mem mappings). Signed-off-by: Jared Hulbert <jaredeh@gmail.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:12:58 +00:00
*
*
mm: introduce pte_special pte bit s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory model (which is more dynamic than most). Instead, they had proposed to implement it with an additional path through vm_normal_page(), using a bit in the pte to determine whether or not the page should be refcounted: vm_normal_page() { ... if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; #else if (!pfn_valid(pfn)) return NULL; #endif goto out; } ... } This is fine, however if we are allowed to use a bit in the pte to determine refcountedness, we can use that to _completely_ replace all the vma based schemes. So instead of adding more cases to the already complex vma-based scheme, we can have a clearly seperate and simple pte-based scheme (and get slightly better code generation in the process): vm_normal_page() { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; return pte_page(pte); #else ... #endif } And finally, we may rather make this concept usable by any architecture rather than making it s390 only, so implement a new type of pte state for this. Unfortunately the old vma based code must stay, because some architectures may not be able to spare pte bits. This makes vm_normal_page a little bit more ugly than we would like, but the 2 cases are clearly seperate. So introduce a pte_special pte state, and use it in mm/memory.c. It is currently a noop for all architectures, so this doesn't actually result in any compiled code changes to mm/memory.o. BTW: I haven't put vm_normal_page() into arch code as-per an earlier suggestion. The reason is that, regardless of where vm_normal_page is actually implemented, the *abstraction* is still exactly the same. Also, while it depends on whether the architecture has pte_special or not, that is the only two possible cases, and it really isn't an arch specific function -- the role of the arch code should be to provide primitive functions and accessors with which to build the core code; pte_special does that. We do not want architectures to know or care about vm_normal_page itself, and we definitely don't want them being able to invent something new there out of sight of mm/ code. If we made vm_normal_page an arch function, then we have to make vm_insert_mixed (next patch) an arch function too. So I don't think moving it to arch code fundamentally improves any abstractions, while it does practically make the code more difficult to follow, for both mm and arch developers, and easier to misuse. [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:13:00 +00:00
* In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
mm: introduce VM_MIXEDMAP This series introduces some important infrastructure work. The overall result is that: 1. We now support XIP backed filesystems using memory that have no struct page allocated to them. And patches 6 and 7 actually implement this for s390. This is pretty important in a number of cases. As far as I understand, in the case of virtualisation (eg. s390), each guest may mount a readonly copy of the same filesystem (eg. the distro). Currently, guests need to allocate struct pages for this image. So if you have 100 guests, you already need to allocate more memory for the struct pages than the size of the image. I think. (Carsten?) For other (eg. embedded) systems, you may have a very large non- volatile filesystem. If you have to have struct pages for this, then your RAM consumption will go up proportionally to fs size. Even though it is just a small proportion, the RAM can be much more costly eg in terms of power, so every KB less that Linux uses makes it more attractive to a lot of these guys. 2. VM_MIXEDMAP allows us to support mappings where you actually do want to refcount _some_ pages in the mapping, but not others, and support COW on arbitrary (non-linear) mappings. Jared needs this for his NVRAM filesystem in progress. Future iterations of this filesystem will most likely want to migrate pages between pagecache and XIP backing, which is where the requirement for mixed (some refcounted, some not) comes from. 3. pte_special also has a peripheral usage that I need for my lockless get_user_pages patch. That was shown to speed up "oltp" on db2 by 10% on a 2 socket system, which is kind of significant because they scrounge for months to try to find 0.1% improvement on these workloads. I'm hoping we might finally be faster than AIX on pSeries with this :). My reference to lockless get_user_pages is not meant to justify this patchset (which doesn't include lockless gup), but just to show that pte_special is not some s390 specific thing that should be hidden in arch code or xip code: I definitely want to use it on at least x86 and powerpc as well. This patch: Introduce a new type of mapping, VM_MIXEDMAP. This is unlike VM_PFNMAP in that it can support COW mappings of arbitrary ranges including ranges without struct page *and* ranges with a struct page that we actually want to refcount (PFNMAP can only support COW in those cases where the un-COW-ed translations are mapped linearly in the virtual address, and can only support non refcounted ranges). VM_MIXEDMAP achieves this by refcounting all pfn_valid pages, and not refcounting !pfn_valid pages (which is not an option for VM_PFNMAP, because it needs to avoid refcounting pfn_valid pages eg. for /dev/mem mappings). Signed-off-by: Jared Hulbert <jaredeh@gmail.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:12:58 +00:00
*
* VM_MIXEDMAP mappings can likewise contain memory with or without "struct
* page" backing, however the difference is that _all_ pages with a struct
* page (that is, those where pfn_valid is true) are refcounted and considered
* normal pages by the VM. The disadvantage is that pages are refcounted
* (which can be slower and simply not an option for some PFNMAP users). The
* advantage is that we don't have to follow the strict linearity rule of
* PFNMAP mappings in order to support COWable mappings.
*
*/
mm: introduce pte_special pte bit s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory model (which is more dynamic than most). Instead, they had proposed to implement it with an additional path through vm_normal_page(), using a bit in the pte to determine whether or not the page should be refcounted: vm_normal_page() { ... if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; #else if (!pfn_valid(pfn)) return NULL; #endif goto out; } ... } This is fine, however if we are allowed to use a bit in the pte to determine refcountedness, we can use that to _completely_ replace all the vma based schemes. So instead of adding more cases to the already complex vma-based scheme, we can have a clearly seperate and simple pte-based scheme (and get slightly better code generation in the process): vm_normal_page() { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; return pte_page(pte); #else ... #endif } And finally, we may rather make this concept usable by any architecture rather than making it s390 only, so implement a new type of pte state for this. Unfortunately the old vma based code must stay, because some architectures may not be able to spare pte bits. This makes vm_normal_page a little bit more ugly than we would like, but the 2 cases are clearly seperate. So introduce a pte_special pte state, and use it in mm/memory.c. It is currently a noop for all architectures, so this doesn't actually result in any compiled code changes to mm/memory.o. BTW: I haven't put vm_normal_page() into arch code as-per an earlier suggestion. The reason is that, regardless of where vm_normal_page is actually implemented, the *abstraction* is still exactly the same. Also, while it depends on whether the architecture has pte_special or not, that is the only two possible cases, and it really isn't an arch specific function -- the role of the arch code should be to provide primitive functions and accessors with which to build the core code; pte_special does that. We do not want architectures to know or care about vm_normal_page itself, and we definitely don't want them being able to invent something new there out of sight of mm/ code. If we made vm_normal_page an arch function, then we have to make vm_insert_mixed (next patch) an arch function too. So I don't think moving it to arch code fundamentally improves any abstractions, while it does practically make the code more difficult to follow, for both mm and arch developers, and easier to misuse. [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:13:00 +00:00
#ifdef __HAVE_ARCH_PTE_SPECIAL
# define HAVE_PTE_SPECIAL 1
#else
# define HAVE_PTE_SPECIAL 0
#endif
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
pte_t pte)
{
unsigned long pfn = pte_pfn(pte);
mm: introduce pte_special pte bit s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory model (which is more dynamic than most). Instead, they had proposed to implement it with an additional path through vm_normal_page(), using a bit in the pte to determine whether or not the page should be refcounted: vm_normal_page() { ... if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; #else if (!pfn_valid(pfn)) return NULL; #endif goto out; } ... } This is fine, however if we are allowed to use a bit in the pte to determine refcountedness, we can use that to _completely_ replace all the vma based schemes. So instead of adding more cases to the already complex vma-based scheme, we can have a clearly seperate and simple pte-based scheme (and get slightly better code generation in the process): vm_normal_page() { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; return pte_page(pte); #else ... #endif } And finally, we may rather make this concept usable by any architecture rather than making it s390 only, so implement a new type of pte state for this. Unfortunately the old vma based code must stay, because some architectures may not be able to spare pte bits. This makes vm_normal_page a little bit more ugly than we would like, but the 2 cases are clearly seperate. So introduce a pte_special pte state, and use it in mm/memory.c. It is currently a noop for all architectures, so this doesn't actually result in any compiled code changes to mm/memory.o. BTW: I haven't put vm_normal_page() into arch code as-per an earlier suggestion. The reason is that, regardless of where vm_normal_page is actually implemented, the *abstraction* is still exactly the same. Also, while it depends on whether the architecture has pte_special or not, that is the only two possible cases, and it really isn't an arch specific function -- the role of the arch code should be to provide primitive functions and accessors with which to build the core code; pte_special does that. We do not want architectures to know or care about vm_normal_page itself, and we definitely don't want them being able to invent something new there out of sight of mm/ code. If we made vm_normal_page an arch function, then we have to make vm_insert_mixed (next patch) an arch function too. So I don't think moving it to arch code fundamentally improves any abstractions, while it does practically make the code more difficult to follow, for both mm and arch developers, and easier to misuse. [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:13:00 +00:00
if (HAVE_PTE_SPECIAL) {
if (likely(!pte_special(pte)))
goto check_pfn;
mm: reinstate ZERO_PAGE KAMEZAWA Hiroyuki has observed customers of earlier kernels taking advantage of the ZERO_PAGE: which we stopped do_anonymous_page() from using in 2.6.24. And there were a couple of regression reports on LKML. Following suggestions from Linus, reinstate do_anonymous_page() use of the ZERO_PAGE; but this time avoid dirtying its struct page cacheline with (map)count updates - let vm_normal_page() regard it as abnormal. Use it only on arches which __HAVE_ARCH_PTE_SPECIAL (x86, s390, sh32, most powerpc): that's not essential, but minimizes additional branches (keeping them in the unlikely pte_special case); and incidentally excludes mips (some models of which needed eight colours of ZERO_PAGE to avoid costly exceptions). Don't be fanatical about avoiding ZERO_PAGE updates: get_user_pages() callers won't want to make exceptions for it, so increment its count there. Changes to mlock and migration? happily seems not needed. In most places it's quicker to check pfn than struct page address: prepare a __read_mostly zero_pfn for that. Does get_dump_page() still need its ZERO_PAGE check? probably not, but keep it anyway. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Acked-by: Rik van Riel <riel@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:03:30 +00:00
if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
return NULL;
if (!is_zero_pfn(pfn))
print_bad_pte(vma, addr, pte, NULL);
mm: introduce pte_special pte bit s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory model (which is more dynamic than most). Instead, they had proposed to implement it with an additional path through vm_normal_page(), using a bit in the pte to determine whether or not the page should be refcounted: vm_normal_page() { ... if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; #else if (!pfn_valid(pfn)) return NULL; #endif goto out; } ... } This is fine, however if we are allowed to use a bit in the pte to determine refcountedness, we can use that to _completely_ replace all the vma based schemes. So instead of adding more cases to the already complex vma-based scheme, we can have a clearly seperate and simple pte-based scheme (and get slightly better code generation in the process): vm_normal_page() { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; return pte_page(pte); #else ... #endif } And finally, we may rather make this concept usable by any architecture rather than making it s390 only, so implement a new type of pte state for this. Unfortunately the old vma based code must stay, because some architectures may not be able to spare pte bits. This makes vm_normal_page a little bit more ugly than we would like, but the 2 cases are clearly seperate. So introduce a pte_special pte state, and use it in mm/memory.c. It is currently a noop for all architectures, so this doesn't actually result in any compiled code changes to mm/memory.o. BTW: I haven't put vm_normal_page() into arch code as-per an earlier suggestion. The reason is that, regardless of where vm_normal_page is actually implemented, the *abstraction* is still exactly the same. Also, while it depends on whether the architecture has pte_special or not, that is the only two possible cases, and it really isn't an arch specific function -- the role of the arch code should be to provide primitive functions and accessors with which to build the core code; pte_special does that. We do not want architectures to know or care about vm_normal_page itself, and we definitely don't want them being able to invent something new there out of sight of mm/ code. If we made vm_normal_page an arch function, then we have to make vm_insert_mixed (next patch) an arch function too. So I don't think moving it to arch code fundamentally improves any abstractions, while it does practically make the code more difficult to follow, for both mm and arch developers, and easier to misuse. [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:13:00 +00:00
return NULL;
}
/* !HAVE_PTE_SPECIAL case follows: */
mm: introduce VM_MIXEDMAP This series introduces some important infrastructure work. The overall result is that: 1. We now support XIP backed filesystems using memory that have no struct page allocated to them. And patches 6 and 7 actually implement this for s390. This is pretty important in a number of cases. As far as I understand, in the case of virtualisation (eg. s390), each guest may mount a readonly copy of the same filesystem (eg. the distro). Currently, guests need to allocate struct pages for this image. So if you have 100 guests, you already need to allocate more memory for the struct pages than the size of the image. I think. (Carsten?) For other (eg. embedded) systems, you may have a very large non- volatile filesystem. If you have to have struct pages for this, then your RAM consumption will go up proportionally to fs size. Even though it is just a small proportion, the RAM can be much more costly eg in terms of power, so every KB less that Linux uses makes it more attractive to a lot of these guys. 2. VM_MIXEDMAP allows us to support mappings where you actually do want to refcount _some_ pages in the mapping, but not others, and support COW on arbitrary (non-linear) mappings. Jared needs this for his NVRAM filesystem in progress. Future iterations of this filesystem will most likely want to migrate pages between pagecache and XIP backing, which is where the requirement for mixed (some refcounted, some not) comes from. 3. pte_special also has a peripheral usage that I need for my lockless get_user_pages patch. That was shown to speed up "oltp" on db2 by 10% on a 2 socket system, which is kind of significant because they scrounge for months to try to find 0.1% improvement on these workloads. I'm hoping we might finally be faster than AIX on pSeries with this :). My reference to lockless get_user_pages is not meant to justify this patchset (which doesn't include lockless gup), but just to show that pte_special is not some s390 specific thing that should be hidden in arch code or xip code: I definitely want to use it on at least x86 and powerpc as well. This patch: Introduce a new type of mapping, VM_MIXEDMAP. This is unlike VM_PFNMAP in that it can support COW mappings of arbitrary ranges including ranges without struct page *and* ranges with a struct page that we actually want to refcount (PFNMAP can only support COW in those cases where the un-COW-ed translations are mapped linearly in the virtual address, and can only support non refcounted ranges). VM_MIXEDMAP achieves this by refcounting all pfn_valid pages, and not refcounting !pfn_valid pages (which is not an option for VM_PFNMAP, because it needs to avoid refcounting pfn_valid pages eg. for /dev/mem mappings). Signed-off-by: Jared Hulbert <jaredeh@gmail.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:12:58 +00:00
if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
if (vma->vm_flags & VM_MIXEDMAP) {
if (!pfn_valid(pfn))
return NULL;
goto out;
} else {
mm: introduce pte_special pte bit s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory model (which is more dynamic than most). Instead, they had proposed to implement it with an additional path through vm_normal_page(), using a bit in the pte to determine whether or not the page should be refcounted: vm_normal_page() { ... if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; #else if (!pfn_valid(pfn)) return NULL; #endif goto out; } ... } This is fine, however if we are allowed to use a bit in the pte to determine refcountedness, we can use that to _completely_ replace all the vma based schemes. So instead of adding more cases to the already complex vma-based scheme, we can have a clearly seperate and simple pte-based scheme (and get slightly better code generation in the process): vm_normal_page() { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; return pte_page(pte); #else ... #endif } And finally, we may rather make this concept usable by any architecture rather than making it s390 only, so implement a new type of pte state for this. Unfortunately the old vma based code must stay, because some architectures may not be able to spare pte bits. This makes vm_normal_page a little bit more ugly than we would like, but the 2 cases are clearly seperate. So introduce a pte_special pte state, and use it in mm/memory.c. It is currently a noop for all architectures, so this doesn't actually result in any compiled code changes to mm/memory.o. BTW: I haven't put vm_normal_page() into arch code as-per an earlier suggestion. The reason is that, regardless of where vm_normal_page is actually implemented, the *abstraction* is still exactly the same. Also, while it depends on whether the architecture has pte_special or not, that is the only two possible cases, and it really isn't an arch specific function -- the role of the arch code should be to provide primitive functions and accessors with which to build the core code; pte_special does that. We do not want architectures to know or care about vm_normal_page itself, and we definitely don't want them being able to invent something new there out of sight of mm/ code. If we made vm_normal_page an arch function, then we have to make vm_insert_mixed (next patch) an arch function too. So I don't think moving it to arch code fundamentally improves any abstractions, while it does practically make the code more difficult to follow, for both mm and arch developers, and easier to misuse. [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:13:00 +00:00
unsigned long off;
off = (addr - vma->vm_start) >> PAGE_SHIFT;
mm: introduce VM_MIXEDMAP This series introduces some important infrastructure work. The overall result is that: 1. We now support XIP backed filesystems using memory that have no struct page allocated to them. And patches 6 and 7 actually implement this for s390. This is pretty important in a number of cases. As far as I understand, in the case of virtualisation (eg. s390), each guest may mount a readonly copy of the same filesystem (eg. the distro). Currently, guests need to allocate struct pages for this image. So if you have 100 guests, you already need to allocate more memory for the struct pages than the size of the image. I think. (Carsten?) For other (eg. embedded) systems, you may have a very large non- volatile filesystem. If you have to have struct pages for this, then your RAM consumption will go up proportionally to fs size. Even though it is just a small proportion, the RAM can be much more costly eg in terms of power, so every KB less that Linux uses makes it more attractive to a lot of these guys. 2. VM_MIXEDMAP allows us to support mappings where you actually do want to refcount _some_ pages in the mapping, but not others, and support COW on arbitrary (non-linear) mappings. Jared needs this for his NVRAM filesystem in progress. Future iterations of this filesystem will most likely want to migrate pages between pagecache and XIP backing, which is where the requirement for mixed (some refcounted, some not) comes from. 3. pte_special also has a peripheral usage that I need for my lockless get_user_pages patch. That was shown to speed up "oltp" on db2 by 10% on a 2 socket system, which is kind of significant because they scrounge for months to try to find 0.1% improvement on these workloads. I'm hoping we might finally be faster than AIX on pSeries with this :). My reference to lockless get_user_pages is not meant to justify this patchset (which doesn't include lockless gup), but just to show that pte_special is not some s390 specific thing that should be hidden in arch code or xip code: I definitely want to use it on at least x86 and powerpc as well. This patch: Introduce a new type of mapping, VM_MIXEDMAP. This is unlike VM_PFNMAP in that it can support COW mappings of arbitrary ranges including ranges without struct page *and* ranges with a struct page that we actually want to refcount (PFNMAP can only support COW in those cases where the un-COW-ed translations are mapped linearly in the virtual address, and can only support non refcounted ranges). VM_MIXEDMAP achieves this by refcounting all pfn_valid pages, and not refcounting !pfn_valid pages (which is not an option for VM_PFNMAP, because it needs to avoid refcounting pfn_valid pages eg. for /dev/mem mappings). Signed-off-by: Jared Hulbert <jaredeh@gmail.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:12:58 +00:00
if (pfn == vma->vm_pgoff + off)
return NULL;
if (!is_cow_mapping(vma->vm_flags))
return NULL;
}
}
if (is_zero_pfn(pfn))
return NULL;
check_pfn:
if (unlikely(pfn > highest_memmap_pfn)) {
print_bad_pte(vma, addr, pte, NULL);
return NULL;
}
/*
mm: introduce pte_special pte bit s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory model (which is more dynamic than most). Instead, they had proposed to implement it with an additional path through vm_normal_page(), using a bit in the pte to determine whether or not the page should be refcounted: vm_normal_page() { ... if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; #else if (!pfn_valid(pfn)) return NULL; #endif goto out; } ... } This is fine, however if we are allowed to use a bit in the pte to determine refcountedness, we can use that to _completely_ replace all the vma based schemes. So instead of adding more cases to the already complex vma-based scheme, we can have a clearly seperate and simple pte-based scheme (and get slightly better code generation in the process): vm_normal_page() { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; return pte_page(pte); #else ... #endif } And finally, we may rather make this concept usable by any architecture rather than making it s390 only, so implement a new type of pte state for this. Unfortunately the old vma based code must stay, because some architectures may not be able to spare pte bits. This makes vm_normal_page a little bit more ugly than we would like, but the 2 cases are clearly seperate. So introduce a pte_special pte state, and use it in mm/memory.c. It is currently a noop for all architectures, so this doesn't actually result in any compiled code changes to mm/memory.o. BTW: I haven't put vm_normal_page() into arch code as-per an earlier suggestion. The reason is that, regardless of where vm_normal_page is actually implemented, the *abstraction* is still exactly the same. Also, while it depends on whether the architecture has pte_special or not, that is the only two possible cases, and it really isn't an arch specific function -- the role of the arch code should be to provide primitive functions and accessors with which to build the core code; pte_special does that. We do not want architectures to know or care about vm_normal_page itself, and we definitely don't want them being able to invent something new there out of sight of mm/ code. If we made vm_normal_page an arch function, then we have to make vm_insert_mixed (next patch) an arch function too. So I don't think moving it to arch code fundamentally improves any abstractions, while it does practically make the code more difficult to follow, for both mm and arch developers, and easier to misuse. [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:13:00 +00:00
* NOTE! We still have PageReserved() pages in the page tables.
* eg. VDSO mappings can cause them to exist.
*/
mm: introduce VM_MIXEDMAP This series introduces some important infrastructure work. The overall result is that: 1. We now support XIP backed filesystems using memory that have no struct page allocated to them. And patches 6 and 7 actually implement this for s390. This is pretty important in a number of cases. As far as I understand, in the case of virtualisation (eg. s390), each guest may mount a readonly copy of the same filesystem (eg. the distro). Currently, guests need to allocate struct pages for this image. So if you have 100 guests, you already need to allocate more memory for the struct pages than the size of the image. I think. (Carsten?) For other (eg. embedded) systems, you may have a very large non- volatile filesystem. If you have to have struct pages for this, then your RAM consumption will go up proportionally to fs size. Even though it is just a small proportion, the RAM can be much more costly eg in terms of power, so every KB less that Linux uses makes it more attractive to a lot of these guys. 2. VM_MIXEDMAP allows us to support mappings where you actually do want to refcount _some_ pages in the mapping, but not others, and support COW on arbitrary (non-linear) mappings. Jared needs this for his NVRAM filesystem in progress. Future iterations of this filesystem will most likely want to migrate pages between pagecache and XIP backing, which is where the requirement for mixed (some refcounted, some not) comes from. 3. pte_special also has a peripheral usage that I need for my lockless get_user_pages patch. That was shown to speed up "oltp" on db2 by 10% on a 2 socket system, which is kind of significant because they scrounge for months to try to find 0.1% improvement on these workloads. I'm hoping we might finally be faster than AIX on pSeries with this :). My reference to lockless get_user_pages is not meant to justify this patchset (which doesn't include lockless gup), but just to show that pte_special is not some s390 specific thing that should be hidden in arch code or xip code: I definitely want to use it on at least x86 and powerpc as well. This patch: Introduce a new type of mapping, VM_MIXEDMAP. This is unlike VM_PFNMAP in that it can support COW mappings of arbitrary ranges including ranges without struct page *and* ranges with a struct page that we actually want to refcount (PFNMAP can only support COW in those cases where the un-COW-ed translations are mapped linearly in the virtual address, and can only support non refcounted ranges). VM_MIXEDMAP achieves this by refcounting all pfn_valid pages, and not refcounting !pfn_valid pages (which is not an option for VM_PFNMAP, because it needs to avoid refcounting pfn_valid pages eg. for /dev/mem mappings). Signed-off-by: Jared Hulbert <jaredeh@gmail.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:12:58 +00:00
out:
return pfn_to_page(pfn);
}
/*
* copy one vm_area from one task to the other. Assumes the page tables
* already present in the new task to be cleared in the whole range
* covered by this vma.
*/
static inline void
copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
2005-10-30 01:16:12 +00:00
pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
unsigned long addr, int *rss)
{
2005-10-30 01:16:12 +00:00
unsigned long vm_flags = vma->vm_flags;
pte_t pte = *src_pte;
struct page *page;
/* pte contains position in swap or file, so copy. */
if (unlikely(!pte_present(pte))) {
if (!pte_file(pte)) {
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:03:35 +00:00
swp_entry_t entry = pte_to_swp_entry(pte);
swap_duplicate(entry);
/* make sure dst_mm is on swapoff's mmlist. */
if (unlikely(list_empty(&dst_mm->mmlist))) {
spin_lock(&mmlist_lock);
if (list_empty(&dst_mm->mmlist))
list_add(&dst_mm->mmlist,
&src_mm->mmlist);
spin_unlock(&mmlist_lock);
}
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:03:35 +00:00
if (is_write_migration_entry(entry) &&
is_cow_mapping(vm_flags)) {
/*
* COW mappings require pages in both parent
* and child to be set to read.
*/
make_migration_entry_read(&entry);
pte = swp_entry_to_pte(entry);
set_pte_at(src_mm, addr, src_pte, pte);
}
}
goto out_set_pte;
}
/*
* If it's a COW mapping, write protect it both
* in the parent and the child
*/
if (is_cow_mapping(vm_flags)) {
ptep_set_wrprotect(src_mm, addr, src_pte);
pte = pte_wrprotect(pte);
}
/*
* If it's a shared mapping, mark it clean in
* the child
*/
if (vm_flags & VM_SHARED)
pte = pte_mkclean(pte);
pte = pte_mkold(pte);
page = vm_normal_page(vma, addr, pte);
if (page) {
get_page(page);
page_dup_rmap(page);
rss[PageAnon(page)]++;
}
out_set_pte:
set_pte_at(dst_mm, addr, dst_pte, pte);
}
static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
unsigned long addr, unsigned long end)
{
pte_t *src_pte, *dst_pte;
spinlock_t *src_ptl, *dst_ptl;
int progress = 0;
int rss[2];
again:
rss[1] = rss[0] = 0;
dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
if (!dst_pte)
return -ENOMEM;
src_pte = pte_offset_map_nested(src_pmd, addr);
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 01:16:40 +00:00
src_ptl = pte_lockptr(src_mm, src_pmd);
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
arch_enter_lazy_mmu_mode();
do {
/*
* We are holding two locks at this point - either of them
* could generate latencies in another task on another CPU.
*/
if (progress >= 32) {
progress = 0;
if (need_resched() ||
spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
break;
}
if (pte_none(*src_pte)) {
progress++;
continue;
}
copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
progress += 8;
} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
arch_leave_lazy_mmu_mode();
spin_unlock(src_ptl);
pte_unmap_nested(src_pte - 1);
add_mm_rss(dst_mm, rss[0], rss[1]);
pte_unmap_unlock(dst_pte - 1, dst_ptl);
cond_resched();
if (addr != end)
goto again;
return 0;
}
static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
unsigned long addr, unsigned long end)
{
pmd_t *src_pmd, *dst_pmd;
unsigned long next;
dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
if (!dst_pmd)
return -ENOMEM;
src_pmd = pmd_offset(src_pud, addr);
do {
next = pmd_addr_end(addr, end);
if (pmd_none_or_clear_bad(src_pmd))
continue;
if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
vma, addr, next))
return -ENOMEM;
} while (dst_pmd++, src_pmd++, addr = next, addr != end);
return 0;
}
static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
unsigned long addr, unsigned long end)
{
pud_t *src_pud, *dst_pud;
unsigned long next;
dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
if (!dst_pud)
return -ENOMEM;
src_pud = pud_offset(src_pgd, addr);
do {
next = pud_addr_end(addr, end);
if (pud_none_or_clear_bad(src_pud))
continue;
if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
vma, addr, next))
return -ENOMEM;
} while (dst_pud++, src_pud++, addr = next, addr != end);
return 0;
}
int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
struct vm_area_struct *vma)
{
pgd_t *src_pgd, *dst_pgd;
unsigned long next;
unsigned long addr = vma->vm_start;
unsigned long end = vma->vm_end;
mmu-notifiers: core With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages. There are secondary MMUs (with secondary sptes and secondary tlbs) too. sptes in the kvm case are shadow pagetables, but when I say spte in mmu-notifier context, I mean "secondary pte". In GRU case there's no actual secondary pte and there's only a secondary tlb because the GRU secondary MMU has no knowledge about sptes and every secondary tlb miss event in the MMU always generates a page fault that has to be resolved by the CPU (this is not the case of KVM where the a secondary tlb miss will walk sptes in hardware and it will refill the secondary tlb transparently to software if the corresponding spte is present). The same way zap_page_range has to invalidate the pte before freeing the page, the spte (and secondary tlb) must also be invalidated before any page is freed and reused. Currently we take a page_count pin on every page mapped by sptes, but that means the pages can't be swapped whenever they're mapped by any spte because they're part of the guest working set. Furthermore a spte unmap event can immediately lead to a page to be freed when the pin is released (so requiring the same complex and relatively slow tlb_gather smp safe logic we have in zap_page_range and that can be avoided completely if the spte unmap event doesn't require an unpin of the page previously mapped in the secondary MMU). The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know when the VM is swapping or freeing or doing anything on the primary MMU so that the secondary MMU code can drop sptes before the pages are freed, avoiding all page pinning and allowing 100% reliable swapping of guest physical address space. Furthermore it avoids the code that teardown the mappings of the secondary MMU, to implement a logic like tlb_gather in zap_page_range that would require many IPI to flush other cpu tlbs, for each fixed number of spte unmapped. To make an example: if what happens on the primary MMU is a protection downgrade (from writeable to wrprotect) the secondary MMU mappings will be invalidated, and the next secondary-mmu-page-fault will call get_user_pages and trigger a do_wp_page through get_user_pages if it called get_user_pages with write=1, and it'll re-establishing an updated spte or secondary-tlb-mapping on the copied page. Or it will setup a readonly spte or readonly tlb mapping if it's a guest-read, if it calls get_user_pages with write=0. This is just an example. This allows to map any page pointed by any pte (and in turn visible in the primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an full MMU with both sptes and secondary-tlb like the shadow-pagetable layer with kvm), or a remote DMA in software like XPMEM (hence needing of schedule in XPMEM code to send the invalidate to the remote node, while no need to schedule in kvm/gru as it's an immediate event like invalidating primary-mmu pte). At least for KVM without this patch it's impossible to swap guests reliably. And having this feature and removing the page pin allows several other optimizations that simplify life considerably. Dependencies: 1) mm_take_all_locks() to register the mmu notifier when the whole VM isn't doing anything with "mm". This allows mmu notifier users to keep track if the VM is in the middle of the invalidate_range_begin/end critical section with an atomic counter incraese in range_begin and decreased in range_end. No secondary MMU page fault is allowed to map any spte or secondary tlb reference, while the VM is in the middle of range_begin/end as any page returned by get_user_pages in that critical section could later immediately be freed without any further ->invalidate_page notification (invalidate_range_begin/end works on ranges and ->invalidate_page isn't called immediately before freeing the page). To stop all page freeing and pagetable overwrites the mmap_sem must be taken in write mode and all other anon_vma/i_mmap locks must be taken too. 2) It'd be a waste to add branches in the VM if nobody could possibly run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of mmu notifiers, but this already allows to compile a KVM external module against a kernel with mmu notifiers enabled and from the next pull from kvm.git we'll start using them. And GRU/XPMEM will also be able to continue the development by enabling KVM=m in their config, until they submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n). This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM are all =n. The mmu_notifier_register call can fail because mm_take_all_locks may be interrupted by a signal and return -EINTR. Because mmu_notifier_reigster is used when a driver startup, a failure can be gracefully handled. Here an example of the change applied to kvm to register the mmu notifiers. Usually when a driver startups other allocations are required anyway and -ENOMEM failure paths exists already. struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); + int err; if (!kvm) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops; + err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm); + if (err) { + kfree(kvm); + return ERR_PTR(err); + } + return kvm; } mmu_notifier_unregister returns void and it's reliable. The patch also adds a few needed but missing includes that would prevent kernel to compile after these changes on non-x86 archs (x86 didn't need them by luck). [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix mm/filemap_xip.c build] [akpm@linux-foundation.org: fix mm/mmu_notifier.c build] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Kanoj Sarcar <kanojsarcar@yahoo.com> Cc: Roland Dreier <rdreier@cisco.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Chris Wright <chrisw@redhat.com> Cc: Marcelo Tosatti <marcelo@kvack.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Izik Eidus <izike@qumranet.com> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-28 22:46:29 +00:00
int ret;
/*
* Don't copy ptes where a page fault will fill them correctly.
* Fork becomes much lighter when there are big shared or private
* readonly mappings. The tradeoff is that copy_page_range is more
* efficient than faulting.
*/
if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
if (!vma->anon_vma)
return 0;
}
if (is_vm_hugetlb_page(vma))
return copy_hugetlb_page_range(dst_mm, src_mm, vma);
if (unlikely(is_pfn_mapping(vma))) {
/*
* We do not free on error cases below as remove_vma
* gets called on error from higher level routine
*/
ret = track_pfn_vma_copy(vma);
if (ret)
return ret;
}
mmu-notifiers: core With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages. There are secondary MMUs (with secondary sptes and secondary tlbs) too. sptes in the kvm case are shadow pagetables, but when I say spte in mmu-notifier context, I mean "secondary pte". In GRU case there's no actual secondary pte and there's only a secondary tlb because the GRU secondary MMU has no knowledge about sptes and every secondary tlb miss event in the MMU always generates a page fault that has to be resolved by the CPU (this is not the case of KVM where the a secondary tlb miss will walk sptes in hardware and it will refill the secondary tlb transparently to software if the corresponding spte is present). The same way zap_page_range has to invalidate the pte before freeing the page, the spte (and secondary tlb) must also be invalidated before any page is freed and reused. Currently we take a page_count pin on every page mapped by sptes, but that means the pages can't be swapped whenever they're mapped by any spte because they're part of the guest working set. Furthermore a spte unmap event can immediately lead to a page to be freed when the pin is released (so requiring the same complex and relatively slow tlb_gather smp safe logic we have in zap_page_range and that can be avoided completely if the spte unmap event doesn't require an unpin of the page previously mapped in the secondary MMU). The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know when the VM is swapping or freeing or doing anything on the primary MMU so that the secondary MMU code can drop sptes before the pages are freed, avoiding all page pinning and allowing 100% reliable swapping of guest physical address space. Furthermore it avoids the code that teardown the mappings of the secondary MMU, to implement a logic like tlb_gather in zap_page_range that would require many IPI to flush other cpu tlbs, for each fixed number of spte unmapped. To make an example: if what happens on the primary MMU is a protection downgrade (from writeable to wrprotect) the secondary MMU mappings will be invalidated, and the next secondary-mmu-page-fault will call get_user_pages and trigger a do_wp_page through get_user_pages if it called get_user_pages with write=1, and it'll re-establishing an updated spte or secondary-tlb-mapping on the copied page. Or it will setup a readonly spte or readonly tlb mapping if it's a guest-read, if it calls get_user_pages with write=0. This is just an example. This allows to map any page pointed by any pte (and in turn visible in the primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an full MMU with both sptes and secondary-tlb like the shadow-pagetable layer with kvm), or a remote DMA in software like XPMEM (hence needing of schedule in XPMEM code to send the invalidate to the remote node, while no need to schedule in kvm/gru as it's an immediate event like invalidating primary-mmu pte). At least for KVM without this patch it's impossible to swap guests reliably. And having this feature and removing the page pin allows several other optimizations that simplify life considerably. Dependencies: 1) mm_take_all_locks() to register the mmu notifier when the whole VM isn't doing anything with "mm". This allows mmu notifier users to keep track if the VM is in the middle of the invalidate_range_begin/end critical section with an atomic counter incraese in range_begin and decreased in range_end. No secondary MMU page fault is allowed to map any spte or secondary tlb reference, while the VM is in the middle of range_begin/end as any page returned by get_user_pages in that critical section could later immediately be freed without any further ->invalidate_page notification (invalidate_range_begin/end works on ranges and ->invalidate_page isn't called immediately before freeing the page). To stop all page freeing and pagetable overwrites the mmap_sem must be taken in write mode and all other anon_vma/i_mmap locks must be taken too. 2) It'd be a waste to add branches in the VM if nobody could possibly run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of mmu notifiers, but this already allows to compile a KVM external module against a kernel with mmu notifiers enabled and from the next pull from kvm.git we'll start using them. And GRU/XPMEM will also be able to continue the development by enabling KVM=m in their config, until they submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n). This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM are all =n. The mmu_notifier_register call can fail because mm_take_all_locks may be interrupted by a signal and return -EINTR. Because mmu_notifier_reigster is used when a driver startup, a failure can be gracefully handled. Here an example of the change applied to kvm to register the mmu notifiers. Usually when a driver startups other allocations are required anyway and -ENOMEM failure paths exists already. struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); + int err; if (!kvm) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops; + err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm); + if (err) { + kfree(kvm); + return ERR_PTR(err); + } + return kvm; } mmu_notifier_unregister returns void and it's reliable. The patch also adds a few needed but missing includes that would prevent kernel to compile after these changes on non-x86 archs (x86 didn't need them by luck). [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix mm/filemap_xip.c build] [akpm@linux-foundation.org: fix mm/mmu_notifier.c build] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Kanoj Sarcar <kanojsarcar@yahoo.com> Cc: Roland Dreier <rdreier@cisco.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Chris Wright <chrisw@redhat.com> Cc: Marcelo Tosatti <marcelo@kvack.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Izik Eidus <izike@qumranet.com> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-28 22:46:29 +00:00
/*
* We need to invalidate the secondary MMU mappings only when
* there could be a permission downgrade on the ptes of the
* parent mm. And a permission downgrade will only happen if
* is_cow_mapping() returns true.
*/
if (is_cow_mapping(vma->vm_flags))
mmu_notifier_invalidate_range_start(src_mm, addr, end);
ret = 0;
dst_pgd = pgd_offset(dst_mm, addr);
src_pgd = pgd_offset(src_mm, addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(src_pgd))
continue;
mmu-notifiers: core With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages. There are secondary MMUs (with secondary sptes and secondary tlbs) too. sptes in the kvm case are shadow pagetables, but when I say spte in mmu-notifier context, I mean "secondary pte". In GRU case there's no actual secondary pte and there's only a secondary tlb because the GRU secondary MMU has no knowledge about sptes and every secondary tlb miss event in the MMU always generates a page fault that has to be resolved by the CPU (this is not the case of KVM where the a secondary tlb miss will walk sptes in hardware and it will refill the secondary tlb transparently to software if the corresponding spte is present). The same way zap_page_range has to invalidate the pte before freeing the page, the spte (and secondary tlb) must also be invalidated before any page is freed and reused. Currently we take a page_count pin on every page mapped by sptes, but that means the pages can't be swapped whenever they're mapped by any spte because they're part of the guest working set. Furthermore a spte unmap event can immediately lead to a page to be freed when the pin is released (so requiring the same complex and relatively slow tlb_gather smp safe logic we have in zap_page_range and that can be avoided completely if the spte unmap event doesn't require an unpin of the page previously mapped in the secondary MMU). The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know when the VM is swapping or freeing or doing anything on the primary MMU so that the secondary MMU code can drop sptes before the pages are freed, avoiding all page pinning and allowing 100% reliable swapping of guest physical address space. Furthermore it avoids the code that teardown the mappings of the secondary MMU, to implement a logic like tlb_gather in zap_page_range that would require many IPI to flush other cpu tlbs, for each fixed number of spte unmapped. To make an example: if what happens on the primary MMU is a protection downgrade (from writeable to wrprotect) the secondary MMU mappings will be invalidated, and the next secondary-mmu-page-fault will call get_user_pages and trigger a do_wp_page through get_user_pages if it called get_user_pages with write=1, and it'll re-establishing an updated spte or secondary-tlb-mapping on the copied page. Or it will setup a readonly spte or readonly tlb mapping if it's a guest-read, if it calls get_user_pages with write=0. This is just an example. This allows to map any page pointed by any pte (and in turn visible in the primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an full MMU with both sptes and secondary-tlb like the shadow-pagetable layer with kvm), or a remote DMA in software like XPMEM (hence needing of schedule in XPMEM code to send the invalidate to the remote node, while no need to schedule in kvm/gru as it's an immediate event like invalidating primary-mmu pte). At least for KVM without this patch it's impossible to swap guests reliably. And having this feature and removing the page pin allows several other optimizations that simplify life considerably. Dependencies: 1) mm_take_all_locks() to register the mmu notifier when the whole VM isn't doing anything with "mm". This allows mmu notifier users to keep track if the VM is in the middle of the invalidate_range_begin/end critical section with an atomic counter incraese in range_begin and decreased in range_end. No secondary MMU page fault is allowed to map any spte or secondary tlb reference, while the VM is in the middle of range_begin/end as any page returned by get_user_pages in that critical section could later immediately be freed without any further ->invalidate_page notification (invalidate_range_begin/end works on ranges and ->invalidate_page isn't called immediately before freeing the page). To stop all page freeing and pagetable overwrites the mmap_sem must be taken in write mode and all other anon_vma/i_mmap locks must be taken too. 2) It'd be a waste to add branches in the VM if nobody could possibly run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of mmu notifiers, but this already allows to compile a KVM external module against a kernel with mmu notifiers enabled and from the next pull from kvm.git we'll start using them. And GRU/XPMEM will also be able to continue the development by enabling KVM=m in their config, until they submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n). This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM are all =n. The mmu_notifier_register call can fail because mm_take_all_locks may be interrupted by a signal and return -EINTR. Because mmu_notifier_reigster is used when a driver startup, a failure can be gracefully handled. Here an example of the change applied to kvm to register the mmu notifiers. Usually when a driver startups other allocations are required anyway and -ENOMEM failure paths exists already. struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); + int err; if (!kvm) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops; + err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm); + if (err) { + kfree(kvm); + return ERR_PTR(err); + } + return kvm; } mmu_notifier_unregister returns void and it's reliable. The patch also adds a few needed but missing includes that would prevent kernel to compile after these changes on non-x86 archs (x86 didn't need them by luck). [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix mm/filemap_xip.c build] [akpm@linux-foundation.org: fix mm/mmu_notifier.c build] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Kanoj Sarcar <kanojsarcar@yahoo.com> Cc: Roland Dreier <rdreier@cisco.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Chris Wright <chrisw@redhat.com> Cc: Marcelo Tosatti <marcelo@kvack.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Izik Eidus <izike@qumranet.com> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-28 22:46:29 +00:00
if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
vma, addr, next))) {
ret = -ENOMEM;
break;
}
} while (dst_pgd++, src_pgd++, addr = next, addr != end);
mmu-notifiers: core With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages. There are secondary MMUs (with secondary sptes and secondary tlbs) too. sptes in the kvm case are shadow pagetables, but when I say spte in mmu-notifier context, I mean "secondary pte". In GRU case there's no actual secondary pte and there's only a secondary tlb because the GRU secondary MMU has no knowledge about sptes and every secondary tlb miss event in the MMU always generates a page fault that has to be resolved by the CPU (this is not the case of KVM where the a secondary tlb miss will walk sptes in hardware and it will refill the secondary tlb transparently to software if the corresponding spte is present). The same way zap_page_range has to invalidate the pte before freeing the page, the spte (and secondary tlb) must also be invalidated before any page is freed and reused. Currently we take a page_count pin on every page mapped by sptes, but that means the pages can't be swapped whenever they're mapped by any spte because they're part of the guest working set. Furthermore a spte unmap event can immediately lead to a page to be freed when the pin is released (so requiring the same complex and relatively slow tlb_gather smp safe logic we have in zap_page_range and that can be avoided completely if the spte unmap event doesn't require an unpin of the page previously mapped in the secondary MMU). The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know when the VM is swapping or freeing or doing anything on the primary MMU so that the secondary MMU code can drop sptes before the pages are freed, avoiding all page pinning and allowing 100% reliable swapping of guest physical address space. Furthermore it avoids the code that teardown the mappings of the secondary MMU, to implement a logic like tlb_gather in zap_page_range that would require many IPI to flush other cpu tlbs, for each fixed number of spte unmapped. To make an example: if what happens on the primary MMU is a protection downgrade (from writeable to wrprotect) the secondary MMU mappings will be invalidated, and the next secondary-mmu-page-fault will call get_user_pages and trigger a do_wp_page through get_user_pages if it called get_user_pages with write=1, and it'll re-establishing an updated spte or secondary-tlb-mapping on the copied page. Or it will setup a readonly spte or readonly tlb mapping if it's a guest-read, if it calls get_user_pages with write=0. This is just an example. This allows to map any page pointed by any pte (and in turn visible in the primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an full MMU with both sptes and secondary-tlb like the shadow-pagetable layer with kvm), or a remote DMA in software like XPMEM (hence needing of schedule in XPMEM code to send the invalidate to the remote node, while no need to schedule in kvm/gru as it's an immediate event like invalidating primary-mmu pte). At least for KVM without this patch it's impossible to swap guests reliably. And having this feature and removing the page pin allows several other optimizations that simplify life considerably. Dependencies: 1) mm_take_all_locks() to register the mmu notifier when the whole VM isn't doing anything with "mm". This allows mmu notifier users to keep track if the VM is in the middle of the invalidate_range_begin/end critical section with an atomic counter incraese in range_begin and decreased in range_end. No secondary MMU page fault is allowed to map any spte or secondary tlb reference, while the VM is in the middle of range_begin/end as any page returned by get_user_pages in that critical section could later immediately be freed without any further ->invalidate_page notification (invalidate_range_begin/end works on ranges and ->invalidate_page isn't called immediately before freeing the page). To stop all page freeing and pagetable overwrites the mmap_sem must be taken in write mode and all other anon_vma/i_mmap locks must be taken too. 2) It'd be a waste to add branches in the VM if nobody could possibly run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of mmu notifiers, but this already allows to compile a KVM external module against a kernel with mmu notifiers enabled and from the next pull from kvm.git we'll start using them. And GRU/XPMEM will also be able to continue the development by enabling KVM=m in their config, until they submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n). This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM are all =n. The mmu_notifier_register call can fail because mm_take_all_locks may be interrupted by a signal and return -EINTR. Because mmu_notifier_reigster is used when a driver startup, a failure can be gracefully handled. Here an example of the change applied to kvm to register the mmu notifiers. Usually when a driver startups other allocations are required anyway and -ENOMEM failure paths exists already. struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); + int err; if (!kvm) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops; + err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm); + if (err) { + kfree(kvm); + return ERR_PTR(err); + } + return kvm; } mmu_notifier_unregister returns void and it's reliable. The patch also adds a few needed but missing includes that would prevent kernel to compile after these changes on non-x86 archs (x86 didn't need them by luck). [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix mm/filemap_xip.c build] [akpm@linux-foundation.org: fix mm/mmu_notifier.c build] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Kanoj Sarcar <kanojsarcar@yahoo.com> Cc: Roland Dreier <rdreier@cisco.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Chris Wright <chrisw@redhat.com> Cc: Marcelo Tosatti <marcelo@kvack.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Izik Eidus <izike@qumranet.com> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-28 22:46:29 +00:00
if (is_cow_mapping(vma->vm_flags))
mmu_notifier_invalidate_range_end(src_mm,
vma->vm_start, end);
return ret;
}
static unsigned long zap_pte_range(struct mmu_gather *tlb,
2005-10-30 01:16:12 +00:00
struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, unsigned long end,
long *zap_work, struct zap_details *details)
{
2005-10-30 01:16:12 +00:00
struct mm_struct *mm = tlb->mm;
pte_t *pte;
spinlock_t *ptl;
int file_rss = 0;
int anon_rss = 0;
pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
arch_enter_lazy_mmu_mode();
do {
pte_t ptent = *pte;
if (pte_none(ptent)) {
(*zap_work)--;
continue;
}
(*zap_work) -= PAGE_SIZE;
if (pte_present(ptent)) {
struct page *page;
page = vm_normal_page(vma, addr, ptent);
if (unlikely(details) && page) {
/*
* unmap_shared_mapping_pages() wants to
* invalidate cache without truncating:
* unmap shared but keep private pages.
*/
if (details->check_mapping &&
details->check_mapping != page->mapping)
continue;
/*
* Each page->index must be checked when
* invalidating or truncating nonlinear.
*/
if (details->nonlinear_vma &&
(page->index < details->first_index ||
page->index > details->last_index))
continue;
}
2005-10-30 01:16:12 +00:00
ptent = ptep_get_and_clear_full(mm, addr, pte,
2005-09-03 22:55:04 +00:00
tlb->fullmm);
tlb_remove_tlb_entry(tlb, pte, addr);
if (unlikely(!page))
continue;
if (unlikely(details) && details->nonlinear_vma
&& linear_page_index(details->nonlinear_vma,
addr) != page->index)
2005-10-30 01:16:12 +00:00
set_pte_at(mm, addr, pte,
pgoff_to_pte(page->index));
if (PageAnon(page))
anon_rss--;
else {
if (pte_dirty(ptent))
set_page_dirty(page);
if (pte_young(ptent) &&
likely(!VM_SequentialReadHint(vma)))
mark_page_accessed(page);
file_rss--;
}
page_remove_rmap(page);
badpage: replace page_remove_rmap Eeek and BUG Now that bad pages are kept out of circulation, there is no need for the infamous page_remove_rmap() BUG() - once that page is freed, its negative mapcount will issue a "Bad page state" message and the page won't be freed. Removing the BUG() allows more info, on subsequent pages, to be gathered. We do have more info about the page at this point than bad_page() can know - notably, what the pmd is, which might pinpoint something like low 64kB corruption - but page_remove_rmap() isn't given the address to find that. In practice, there is only one call to page_remove_rmap() which has ever reported anything, that from zap_pte_range() (usually on exit, sometimes on munmap). It has all the info, so remove page_remove_rmap()'s "Eeek" message and leave it all to zap_pte_range(). mm/memory.c already has a hardly used print_bad_pte() function, showing some of the appropriate info: extend it to show what we want for the rmap case: pte info, page info (when there is a page) and vma info to compare. zap_pte_range() already knows the pmd, but print_bad_pte() is easier to use if it works that out for itself. Some of this info is also shown in bad_page()'s "Bad page state" message. Keep them separate, but adjust them to match each other as far as possible. Say "Bad page map" in print_bad_pte(), and add a TAINT_BAD_PAGE there too. print_bad_pte() show current->comm unconditionally (though it should get repeated in the usually irrelevant stack trace): sorry, I misled Nick Piggin to make it conditional on vm_mm == current->mm, but current->mm is already NULL in the exit case. Usually current->comm is good, though exceptionally it may not be that of the mm (when "swapoff" for example). Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:40:08 +00:00
if (unlikely(page_mapcount(page) < 0))
print_bad_pte(vma, addr, ptent, page);
tlb_remove_page(tlb, page);
continue;
}
/*
* If details->check_mapping, we leave swap entries;
* if details->nonlinear_vma, we leave file entries.
*/
if (unlikely(details))
continue;
if (pte_file(ptent)) {
if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
print_bad_pte(vma, addr, ptent, NULL);
} else if
(unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
print_bad_pte(vma, addr, ptent, NULL);
pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
add_mm_rss(mm, file_rss, anon_rss);
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(pte - 1, ptl);
return addr;
}
static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
2005-10-30 01:16:12 +00:00
struct vm_area_struct *vma, pud_t *pud,
unsigned long addr, unsigned long end,
long *zap_work, struct zap_details *details)
{
pmd_t *pmd;
unsigned long next;
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
if (pmd_none_or_clear_bad(pmd)) {
(*zap_work)--;
continue;
}
next = zap_pte_range(tlb, vma, pmd, addr, next,
zap_work, details);
} while (pmd++, addr = next, (addr != end && *zap_work > 0));
return addr;
}
static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
2005-10-30 01:16:12 +00:00
struct vm_area_struct *vma, pgd_t *pgd,
unsigned long addr, unsigned long end,
long *zap_work, struct zap_details *details)
{
pud_t *pud;
unsigned long next;
pud = pud_offset(pgd, addr);
do {
next = pud_addr_end(addr, end);
if (pud_none_or_clear_bad(pud)) {
(*zap_work)--;
continue;
}
next = zap_pmd_range(tlb, vma, pud, addr, next,
zap_work, details);
} while (pud++, addr = next, (addr != end && *zap_work > 0));
return addr;
}
static unsigned long unmap_page_range(struct mmu_gather *tlb,
struct vm_area_struct *vma,
unsigned long addr, unsigned long end,
long *zap_work, struct zap_details *details)
{
pgd_t *pgd;
unsigned long next;
if (details && !details->check_mapping && !details->nonlinear_vma)
details = NULL;
BUG_ON(addr >= end);
tlb_start_vma(tlb, vma);
pgd = pgd_offset(vma->vm_mm, addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd)) {
(*zap_work)--;
continue;
}
next = zap_pud_range(tlb, vma, pgd, addr, next,
zap_work, details);
} while (pgd++, addr = next, (addr != end && *zap_work > 0));
tlb_end_vma(tlb, vma);
return addr;
}
#ifdef CONFIG_PREEMPT
# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
#else
/* No preempt: go for improved straight-line efficiency */
# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
#endif
/**
* unmap_vmas - unmap a range of memory covered by a list of vma's
* @tlbp: address of the caller's struct mmu_gather
* @vma: the starting vma
* @start_addr: virtual address at which to start unmapping
* @end_addr: virtual address at which to end unmapping
* @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
* @details: details of nonlinear truncation or shared cache invalidation
*
* Returns the end address of the unmapping (restart addr if interrupted).
*
* Unmap all pages in the vma list.
*
* We aim to not hold locks for too long (for scheduling latency reasons).
* So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
* return the ending mmu_gather to the caller.
*
* Only addresses between `start' and `end' will be unmapped.
*
* The VMA list must be sorted in ascending virtual address order.
*
* unmap_vmas() assumes that the caller will flush the whole unmapped address
* range after unmap_vmas() returns. So the only responsibility here is to
* ensure that any thus-far unmapped pages are flushed before unmap_vmas()
* drops the lock and schedules.
*/
unsigned long unmap_vmas(struct mmu_gather **tlbp,
struct vm_area_struct *vma, unsigned long start_addr,
unsigned long end_addr, unsigned long *nr_accounted,
struct zap_details *details)
{
long zap_work = ZAP_BLOCK_SIZE;
unsigned long tlb_start = 0; /* For tlb_finish_mmu */
int tlb_start_valid = 0;
unsigned long start = start_addr;
spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
int fullmm = (*tlbp)->fullmm;
mmu-notifiers: core With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages. There are secondary MMUs (with secondary sptes and secondary tlbs) too. sptes in the kvm case are shadow pagetables, but when I say spte in mmu-notifier context, I mean "secondary pte". In GRU case there's no actual secondary pte and there's only a secondary tlb because the GRU secondary MMU has no knowledge about sptes and every secondary tlb miss event in the MMU always generates a page fault that has to be resolved by the CPU (this is not the case of KVM where the a secondary tlb miss will walk sptes in hardware and it will refill the secondary tlb transparently to software if the corresponding spte is present). The same way zap_page_range has to invalidate the pte before freeing the page, the spte (and secondary tlb) must also be invalidated before any page is freed and reused. Currently we take a page_count pin on every page mapped by sptes, but that means the pages can't be swapped whenever they're mapped by any spte because they're part of the guest working set. Furthermore a spte unmap event can immediately lead to a page to be freed when the pin is released (so requiring the same complex and relatively slow tlb_gather smp safe logic we have in zap_page_range and that can be avoided completely if the spte unmap event doesn't require an unpin of the page previously mapped in the secondary MMU). The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know when the VM is swapping or freeing or doing anything on the primary MMU so that the secondary MMU code can drop sptes before the pages are freed, avoiding all page pinning and allowing 100% reliable swapping of guest physical address space. Furthermore it avoids the code that teardown the mappings of the secondary MMU, to implement a logic like tlb_gather in zap_page_range that would require many IPI to flush other cpu tlbs, for each fixed number of spte unmapped. To make an example: if what happens on the primary MMU is a protection downgrade (from writeable to wrprotect) the secondary MMU mappings will be invalidated, and the next secondary-mmu-page-fault will call get_user_pages and trigger a do_wp_page through get_user_pages if it called get_user_pages with write=1, and it'll re-establishing an updated spte or secondary-tlb-mapping on the copied page. Or it will setup a readonly spte or readonly tlb mapping if it's a guest-read, if it calls get_user_pages with write=0. This is just an example. This allows to map any page pointed by any pte (and in turn visible in the primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an full MMU with both sptes and secondary-tlb like the shadow-pagetable layer with kvm), or a remote DMA in software like XPMEM (hence needing of schedule in XPMEM code to send the invalidate to the remote node, while no need to schedule in kvm/gru as it's an immediate event like invalidating primary-mmu pte). At least for KVM without this patch it's impossible to swap guests reliably. And having this feature and removing the page pin allows several other optimizations that simplify life considerably. Dependencies: 1) mm_take_all_locks() to register the mmu notifier when the whole VM isn't doing anything with "mm". This allows mmu notifier users to keep track if the VM is in the middle of the invalidate_range_begin/end critical section with an atomic counter incraese in range_begin and decreased in range_end. No secondary MMU page fault is allowed to map any spte or secondary tlb reference, while the VM is in the middle of range_begin/end as any page returned by get_user_pages in that critical section could later immediately be freed without any further ->invalidate_page notification (invalidate_range_begin/end works on ranges and ->invalidate_page isn't called immediately before freeing the page). To stop all page freeing and pagetable overwrites the mmap_sem must be taken in write mode and all other anon_vma/i_mmap locks must be taken too. 2) It'd be a waste to add branches in the VM if nobody could possibly run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of mmu notifiers, but this already allows to compile a KVM external module against a kernel with mmu notifiers enabled and from the next pull from kvm.git we'll start using them. And GRU/XPMEM will also be able to continue the development by enabling KVM=m in their config, until they submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n). This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM are all =n. The mmu_notifier_register call can fail because mm_take_all_locks may be interrupted by a signal and return -EINTR. Because mmu_notifier_reigster is used when a driver startup, a failure can be gracefully handled. Here an example of the change applied to kvm to register the mmu notifiers. Usually when a driver startups other allocations are required anyway and -ENOMEM failure paths exists already. struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); + int err; if (!kvm) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops; + err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm); + if (err) { + kfree(kvm); + return ERR_PTR(err); + } + return kvm; } mmu_notifier_unregister returns void and it's reliable. The patch also adds a few needed but missing includes that would prevent kernel to compile after these changes on non-x86 archs (x86 didn't need them by luck). [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix mm/filemap_xip.c build] [akpm@linux-foundation.org: fix mm/mmu_notifier.c build] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Kanoj Sarcar <kanojsarcar@yahoo.com> Cc: Roland Dreier <rdreier@cisco.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Chris Wright <chrisw@redhat.com> Cc: Marcelo Tosatti <marcelo@kvack.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Izik Eidus <izike@qumranet.com> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-28 22:46:29 +00:00
struct mm_struct *mm = vma->vm_mm;
mmu-notifiers: core With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages. There are secondary MMUs (with secondary sptes and secondary tlbs) too. sptes in the kvm case are shadow pagetables, but when I say spte in mmu-notifier context, I mean "secondary pte". In GRU case there's no actual secondary pte and there's only a secondary tlb because the GRU secondary MMU has no knowledge about sptes and every secondary tlb miss event in the MMU always generates a page fault that has to be resolved by the CPU (this is not the case of KVM where the a secondary tlb miss will walk sptes in hardware and it will refill the secondary tlb transparently to software if the corresponding spte is present). The same way zap_page_range has to invalidate the pte before freeing the page, the spte (and secondary tlb) must also be invalidated before any page is freed and reused. Currently we take a page_count pin on every page mapped by sptes, but that means the pages can't be swapped whenever they're mapped by any spte because they're part of the guest working set. Furthermore a spte unmap event can immediately lead to a page to be freed when the pin is released (so requiring the same complex and relatively slow tlb_gather smp safe logic we have in zap_page_range and that can be avoided completely if the spte unmap event doesn't require an unpin of the page previously mapped in the secondary MMU). The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know when the VM is swapping or freeing or doing anything on the primary MMU so that the secondary MMU code can drop sptes before the pages are freed, avoiding all page pinning and allowing 100% reliable swapping of guest physical address space. Furthermore it avoids the code that teardown the mappings of the secondary MMU, to implement a logic like tlb_gather in zap_page_range that would require many IPI to flush other cpu tlbs, for each fixed number of spte unmapped. To make an example: if what happens on the primary MMU is a protection downgrade (from writeable to wrprotect) the secondary MMU mappings will be invalidated, and the next secondary-mmu-page-fault will call get_user_pages and trigger a do_wp_page through get_user_pages if it called get_user_pages with write=1, and it'll re-establishing an updated spte or secondary-tlb-mapping on the copied page. Or it will setup a readonly spte or readonly tlb mapping if it's a guest-read, if it calls get_user_pages with write=0. This is just an example. This allows to map any page pointed by any pte (and in turn visible in the primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an full MMU with both sptes and secondary-tlb like the shadow-pagetable layer with kvm), or a remote DMA in software like XPMEM (hence needing of schedule in XPMEM code to send the invalidate to the remote node, while no need to schedule in kvm/gru as it's an immediate event like invalidating primary-mmu pte). At least for KVM without this patch it's impossible to swap guests reliably. And having this feature and removing the page pin allows several other optimizations that simplify life considerably. Dependencies: 1) mm_take_all_locks() to register the mmu notifier when the whole VM isn't doing anything with "mm". This allows mmu notifier users to keep track if the VM is in the middle of the invalidate_range_begin/end critical section with an atomic counter incraese in range_begin and decreased in range_end. No secondary MMU page fault is allowed to map any spte or secondary tlb reference, while the VM is in the middle of range_begin/end as any page returned by get_user_pages in that critical section could later immediately be freed without any further ->invalidate_page notification (invalidate_range_begin/end works on ranges and ->invalidate_page isn't called immediately before freeing the page). To stop all page freeing and pagetable overwrites the mmap_sem must be taken in write mode and all other anon_vma/i_mmap locks must be taken too. 2) It'd be a waste to add branches in the VM if nobody could possibly run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of mmu notifiers, but this already allows to compile a KVM external module against a kernel with mmu notifiers enabled and from the next pull from kvm.git we'll start using them. And GRU/XPMEM will also be able to continue the development by enabling KVM=m in their config, until they submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n). This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM are all =n. The mmu_notifier_register call can fail because mm_take_all_locks may be interrupted by a signal and return -EINTR. Because mmu_notifier_reigster is used when a driver startup, a failure can be gracefully handled. Here an example of the change applied to kvm to register the mmu notifiers. Usually when a driver startups other allocations are required anyway and -ENOMEM failure paths exists already. struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); + int err; if (!kvm) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops; + err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm); + if (err) { + kfree(kvm); + return ERR_PTR(err); + } + return kvm; } mmu_notifier_unregister returns void and it's reliable. The patch also adds a few needed but missing includes that would prevent kernel to compile after these changes on non-x86 archs (x86 didn't need them by luck). [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix mm/filemap_xip.c build] [akpm@linux-foundation.org: fix mm/mmu_notifier.c build] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Kanoj Sarcar <kanojsarcar@yahoo.com> Cc: Roland Dreier <rdreier@cisco.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Chris Wright <chrisw@redhat.com> Cc: Marcelo Tosatti <marcelo@kvack.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Izik Eidus <izike@qumranet.com> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-28 22:46:29 +00:00
mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
unsigned long end;
start = max(vma->vm_start, start_addr);
if (start >= vma->vm_end)
continue;
end = min(vma->vm_end, end_addr);
if (end <= vma->vm_start)
continue;
if (vma->vm_flags & VM_ACCOUNT)
*nr_accounted += (end - start) >> PAGE_SHIFT;
if (unlikely(is_pfn_mapping(vma)))
untrack_pfn_vma(vma, 0, 0);
while (start != end) {
if (!tlb_start_valid) {
tlb_start = start;
tlb_start_valid = 1;
}
if (unlikely(is_vm_hugetlb_page(vma))) {
/*
* It is undesirable to test vma->vm_file as it
* should be non-null for valid hugetlb area.
* However, vm_file will be NULL in the error
* cleanup path of do_mmap_pgoff. When
* hugetlbfs ->mmap method fails,
* do_mmap_pgoff() nullifies vma->vm_file
* before calling this function to clean up.
* Since no pte has actually been setup, it is
* safe to do nothing in this case.
*/
if (vma->vm_file) {
unmap_hugepage_range(vma, start, end, NULL);
zap_work -= (end - start) /
pages_per_huge_page(hstate_vma(vma));
}
start = end;
} else
start = unmap_page_range(*tlbp, vma,
start, end, &zap_work, details);
if (zap_work > 0) {
BUG_ON(start != end);
break;
}
tlb_finish_mmu(*tlbp, tlb_start, start);
if (need_resched() ||
(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
if (i_mmap_lock) {
*tlbp = NULL;
goto out;
}
cond_resched();
}
*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
tlb_start_valid = 0;
zap_work = ZAP_BLOCK_SIZE;
}
}
out:
mmu-notifiers: core With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages. There are secondary MMUs (with secondary sptes and secondary tlbs) too. sptes in the kvm case are shadow pagetables, but when I say spte in mmu-notifier context, I mean "secondary pte". In GRU case there's no actual secondary pte and there's only a secondary tlb because the GRU secondary MMU has no knowledge about sptes and every secondary tlb miss event in the MMU always generates a page fault that has to be resolved by the CPU (this is not the case of KVM where the a secondary tlb miss will walk sptes in hardware and it will refill the secondary tlb transparently to software if the corresponding spte is present). The same way zap_page_range has to invalidate the pte before freeing the page, the spte (and secondary tlb) must also be invalidated before any page is freed and reused. Currently we take a page_count pin on every page mapped by sptes, but that means the pages can't be swapped whenever they're mapped by any spte because they're part of the guest working set. Furthermore a spte unmap event can immediately lead to a page to be freed when the pin is released (so requiring the same complex and relatively slow tlb_gather smp safe logic we have in zap_page_range and that can be avoided completely if the spte unmap event doesn't require an unpin of the page previously mapped in the secondary MMU). The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know when the VM is swapping or freeing or doing anything on the primary MMU so that the secondary MMU code can drop sptes before the pages are freed, avoiding all page pinning and allowing 100% reliable swapping of guest physical address space. Furthermore it avoids the code that teardown the mappings of the secondary MMU, to implement a logic like tlb_gather in zap_page_range that would require many IPI to flush other cpu tlbs, for each fixed number of spte unmapped. To make an example: if what happens on the primary MMU is a protection downgrade (from writeable to wrprotect) the secondary MMU mappings will be invalidated, and the next secondary-mmu-page-fault will call get_user_pages and trigger a do_wp_page through get_user_pages if it called get_user_pages with write=1, and it'll re-establishing an updated spte or secondary-tlb-mapping on the copied page. Or it will setup a readonly spte or readonly tlb mapping if it's a guest-read, if it calls get_user_pages with write=0. This is just an example. This allows to map any page pointed by any pte (and in turn visible in the primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an full MMU with both sptes and secondary-tlb like the shadow-pagetable layer with kvm), or a remote DMA in software like XPMEM (hence needing of schedule in XPMEM code to send the invalidate to the remote node, while no need to schedule in kvm/gru as it's an immediate event like invalidating primary-mmu pte). At least for KVM without this patch it's impossible to swap guests reliably. And having this feature and removing the page pin allows several other optimizations that simplify life considerably. Dependencies: 1) mm_take_all_locks() to register the mmu notifier when the whole VM isn't doing anything with "mm". This allows mmu notifier users to keep track if the VM is in the middle of the invalidate_range_begin/end critical section with an atomic counter incraese in range_begin and decreased in range_end. No secondary MMU page fault is allowed to map any spte or secondary tlb reference, while the VM is in the middle of range_begin/end as any page returned by get_user_pages in that critical section could later immediately be freed without any further ->invalidate_page notification (invalidate_range_begin/end works on ranges and ->invalidate_page isn't called immediately before freeing the page). To stop all page freeing and pagetable overwrites the mmap_sem must be taken in write mode and all other anon_vma/i_mmap locks must be taken too. 2) It'd be a waste to add branches in the VM if nobody could possibly run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of mmu notifiers, but this already allows to compile a KVM external module against a kernel with mmu notifiers enabled and from the next pull from kvm.git we'll start using them. And GRU/XPMEM will also be able to continue the development by enabling KVM=m in their config, until they submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n). This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM are all =n. The mmu_notifier_register call can fail because mm_take_all_locks may be interrupted by a signal and return -EINTR. Because mmu_notifier_reigster is used when a driver startup, a failure can be gracefully handled. Here an example of the change applied to kvm to register the mmu notifiers. Usually when a driver startups other allocations are required anyway and -ENOMEM failure paths exists already. struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); + int err; if (!kvm) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops; + err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm); + if (err) { + kfree(kvm); + return ERR_PTR(err); + } + return kvm; } mmu_notifier_unregister returns void and it's reliable. The patch also adds a few needed but missing includes that would prevent kernel to compile after these changes on non-x86 archs (x86 didn't need them by luck). [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix mm/filemap_xip.c build] [akpm@linux-foundation.org: fix mm/mmu_notifier.c build] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Kanoj Sarcar <kanojsarcar@yahoo.com> Cc: Roland Dreier <rdreier@cisco.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Chris Wright <chrisw@redhat.com> Cc: Marcelo Tosatti <marcelo@kvack.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Izik Eidus <izike@qumranet.com> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-28 22:46:29 +00:00
mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
return start; /* which is now the end (or restart) address */
}
/**
* zap_page_range - remove user pages in a given range
* @vma: vm_area_struct holding the applicable pages
* @address: starting address of pages to zap
* @size: number of bytes to zap
* @details: details of nonlinear truncation or shared cache invalidation
*/
unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
unsigned long size, struct zap_details *details)
{
struct mm_struct *mm = vma->vm_mm;
struct mmu_gather *tlb;
unsigned long end = address + size;
unsigned long nr_accounted = 0;
lru_add_drain();
tlb = tlb_gather_mmu(mm, 0);
[PATCH] mm: update_hiwaters just in time update_mem_hiwater has attracted various criticisms, in particular from those concerned with mm scalability. Originally it was called whenever rss or total_vm got raised. Then many of those callsites were replaced by a timer tick call from account_system_time. Now Frank van Maarseveen reports that to be found inadequate. How about this? Works for Frank. Replace update_mem_hiwater, a poor combination of two unrelated ops, by macros update_hiwater_rss and update_hiwater_vm. Don't attempt to keep mm->hiwater_rss up to date at timer tick, nor every time we raise rss (usually by 1): those are hot paths. Do the opposite, update only when about to lower rss (usually by many), or just before final accounting in do_exit. Handle mm->hiwater_vm in the same way, though it's much less of an issue. Demand that whoever collects these hiwater statistics do the work of taking the maximum with rss or total_vm. And there has been no collector of these hiwater statistics in the tree. The new convention needs an example, so match Frank's usage by adding a VmPeak line above VmSize to /proc/<pid>/status, and also a VmHWM line above VmRSS (High-Water-Mark or High-Water-Memory). There was a particular anomaly during mremap move, that hiwater_vm might be captured too high. A fleeting such anomaly remains, but it's quickly corrected now, whereas before it would stick. What locking? None: if the app is racy then these statistics will be racy, it's not worth any overhead to make them exact. But whenever it suits, hiwater_vm is updated under exclusive mmap_sem, and hiwater_rss under page_table_lock (for now) or with preemption disabled (later on): without going to any trouble, minimize the time between reading current values and updating, to minimize those occasions when a racing thread bumps a count up and back down in between. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 01:16:18 +00:00
update_hiwater_rss(mm);
end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
if (tlb)
tlb_finish_mmu(tlb, address, end);
return end;
}
/**
* zap_vma_ptes - remove ptes mapping the vma
* @vma: vm_area_struct holding ptes to be zapped
* @address: starting address of pages to zap
* @size: number of bytes to zap
*
* This function only unmaps ptes assigned to VM_PFNMAP vmas.
*
* The entire address range must be fully contained within the vma.
*
* Returns 0 if successful.
*/
int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
unsigned long size)
{
if (address < vma->vm_start || address + size > vma->vm_end ||
!(vma->vm_flags & VM_PFNMAP))
return -1;
zap_page_range(vma, address, size, NULL);
return 0;
}
EXPORT_SYMBOL_GPL(zap_vma_ptes);
/*
* Do a quick page-table lookup for a single page.
*/
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
unsigned int flags)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *ptep, pte;
spinlock_t *ptl;
struct page *page;
struct mm_struct *mm = vma->vm_mm;
page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
if (!IS_ERR(page)) {
BUG_ON(flags & FOLL_GET);
goto out;
}
page = NULL;
pgd = pgd_offset(mm, address);
if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
goto no_page_table;
pud = pud_offset(pgd, address);
if (pud_none(*pud))
goto no_page_table;
if (pud_huge(*pud)) {
BUG_ON(flags & FOLL_GET);
page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
goto out;
}
if (unlikely(pud_bad(*pud)))
goto no_page_table;
pmd = pmd_offset(pud, address);
x86: fix PAE pmd_bad bootup warning Fix warning from pmd_bad() at bootup on a HIGHMEM64G HIGHPTE x86_32. That came from 9fc34113f6880b215cbea4e7017fc818700384c2 x86: debug pmd_bad(); but we understand now that the typecasting was wrong for PAE in the previous version: pagetable pages above 4GB looked bad and stopped Arjan from booting. And revert that cded932b75ab0a5f9181ee3da34a0a488d1a14fd x86: fix pmd_bad and pud_bad to support huge pages. It was the wrong way round: we shouldn't weaken every pmd_bad and pud_bad check to let huge pages slip through - in part they check that we _don't_ have a huge page where it's not expected. Put the x86 pmd_bad() and pud_bad() definitions back to what they have long been: they can be improved (x86_32 should use PTE_MASK, to stop PAE thinking junk in the upper word is good; and x86_64 should follow x86_32's stricter comparison, to stop thinking any subset of required bits is good); but that should be a later patch. Fix Hans' good observation that follow_page() will never find pmd_huge() because that would have already failed the pmd_bad test: test pmd_huge in between the pmd_none and pmd_bad tests. Tighten x86's pmd_huge() check? No, once it's a hugepage entry, it can get quite far from a good pmd: for example, PROT_NONE leaves it with only ACCESSED of the KERN_PGTABLE bits. However... though follow_page() contains this and another test for huge pages, so it's nice to keep it working on them, where does it actually get called on a huge page? get_user_pages() checks is_vm_hugetlb_page(vma) to to call alternative hugetlb processing, as does unmap_vmas() and others. Signed-off-by: Hugh Dickins <hugh@veritas.com> Earlier-version-tested-by: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jeff Chua <jeff.chua.linux@gmail.com> Cc: Hans Rosenfeld <hans.rosenfeld@amd.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-06 19:49:23 +00:00
if (pmd_none(*pmd))
goto no_page_table;
if (pmd_huge(*pmd)) {
BUG_ON(flags & FOLL_GET);
page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
goto out;
}
x86: fix PAE pmd_bad bootup warning Fix warning from pmd_bad() at bootup on a HIGHMEM64G HIGHPTE x86_32. That came from 9fc34113f6880b215cbea4e7017fc818700384c2 x86: debug pmd_bad(); but we understand now that the typecasting was wrong for PAE in the previous version: pagetable pages above 4GB looked bad and stopped Arjan from booting. And revert that cded932b75ab0a5f9181ee3da34a0a488d1a14fd x86: fix pmd_bad and pud_bad to support huge pages. It was the wrong way round: we shouldn't weaken every pmd_bad and pud_bad check to let huge pages slip through - in part they check that we _don't_ have a huge page where it's not expected. Put the x86 pmd_bad() and pud_bad() definitions back to what they have long been: they can be improved (x86_32 should use PTE_MASK, to stop PAE thinking junk in the upper word is good; and x86_64 should follow x86_32's stricter comparison, to stop thinking any subset of required bits is good); but that should be a later patch. Fix Hans' good observation that follow_page() will never find pmd_huge() because that would have already failed the pmd_bad test: test pmd_huge in between the pmd_none and pmd_bad tests. Tighten x86's pmd_huge() check? No, once it's a hugepage entry, it can get quite far from a good pmd: for example, PROT_NONE leaves it with only ACCESSED of the KERN_PGTABLE bits. However... though follow_page() contains this and another test for huge pages, so it's nice to keep it working on them, where does it actually get called on a huge page? get_user_pages() checks is_vm_hugetlb_page(vma) to to call alternative hugetlb processing, as does unmap_vmas() and others. Signed-off-by: Hugh Dickins <hugh@veritas.com> Earlier-version-tested-by: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jeff Chua <jeff.chua.linux@gmail.com> Cc: Hans Rosenfeld <hans.rosenfeld@amd.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-06 19:49:23 +00:00
if (unlikely(pmd_bad(*pmd)))
goto no_page_table;
ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
pte = *ptep;
if (!pte_present(pte))
Reinstate ZERO_PAGE optimization in 'get_user_pages()' and fix XIP KAMEZAWA Hiroyuki and Oleg Nesterov point out that since the commit 557ed1fa2620dc119adb86b34c614e152a629a80 ("remove ZERO_PAGE") removed the ZERO_PAGE from the VM mappings, any users of get_user_pages() will generally now populate the VM with real empty pages needlessly. We used to get the ZERO_PAGE when we did the "handle_mm_fault()", but since fault handling no longer uses ZERO_PAGE for new anonymous pages, we now need to handle that special case in follow_page() instead. In particular, the removal of ZERO_PAGE effectively removed the core file writing optimization where we would skip writing pages that had not been populated at all, and increased memory pressure a lot by allocating all those useless newly zeroed pages. This reinstates the optimization by making the unmapped PTE case the same as for a non-existent page table, which already did this correctly. While at it, this also fixes the XIP case for follow_page(), where the caller could not differentiate between the case of a page that simply could not be used (because it had no "struct page" associated with it) and a page that just wasn't mapped. We do that by simply returning an error pointer for pages that could not be turned into a "struct page *". The error is arbitrarily picked to be EFAULT, since that was what get_user_pages() already used for the equivalent IO-mapped page case. [ Also removed an impossible test for pte_offset_map_lock() failing: that's not how that function works ] Acked-by: Oleg Nesterov <oleg@tv-sign.ru> Acked-by: Nick Piggin <npiggin@suse.de> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-20 18:18:25 +00:00
goto no_page;
if ((flags & FOLL_WRITE) && !pte_write(pte))
goto unlock;
mm: reinstate ZERO_PAGE KAMEZAWA Hiroyuki has observed customers of earlier kernels taking advantage of the ZERO_PAGE: which we stopped do_anonymous_page() from using in 2.6.24. And there were a couple of regression reports on LKML. Following suggestions from Linus, reinstate do_anonymous_page() use of the ZERO_PAGE; but this time avoid dirtying its struct page cacheline with (map)count updates - let vm_normal_page() regard it as abnormal. Use it only on arches which __HAVE_ARCH_PTE_SPECIAL (x86, s390, sh32, most powerpc): that's not essential, but minimizes additional branches (keeping them in the unlikely pte_special case); and incidentally excludes mips (some models of which needed eight colours of ZERO_PAGE to avoid costly exceptions). Don't be fanatical about avoiding ZERO_PAGE updates: get_user_pages() callers won't want to make exceptions for it, so increment its count there. Changes to mlock and migration? happily seems not needed. In most places it's quicker to check pfn than struct page address: prepare a __read_mostly zero_pfn for that. Does get_dump_page() still need its ZERO_PAGE check? probably not, but keep it anyway. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Acked-by: Rik van Riel <riel@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:03:30 +00:00
page = vm_normal_page(vma, address, pte);
mm: reinstate ZERO_PAGE KAMEZAWA Hiroyuki has observed customers of earlier kernels taking advantage of the ZERO_PAGE: which we stopped do_anonymous_page() from using in 2.6.24. And there were a couple of regression reports on LKML. Following suggestions from Linus, reinstate do_anonymous_page() use of the ZERO_PAGE; but this time avoid dirtying its struct page cacheline with (map)count updates - let vm_normal_page() regard it as abnormal. Use it only on arches which __HAVE_ARCH_PTE_SPECIAL (x86, s390, sh32, most powerpc): that's not essential, but minimizes additional branches (keeping them in the unlikely pte_special case); and incidentally excludes mips (some models of which needed eight colours of ZERO_PAGE to avoid costly exceptions). Don't be fanatical about avoiding ZERO_PAGE updates: get_user_pages() callers won't want to make exceptions for it, so increment its count there. Changes to mlock and migration? happily seems not needed. In most places it's quicker to check pfn than struct page address: prepare a __read_mostly zero_pfn for that. Does get_dump_page() still need its ZERO_PAGE check? probably not, but keep it anyway. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Acked-by: Rik van Riel <riel@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:03:30 +00:00
if (unlikely(!page)) {
if ((flags & FOLL_DUMP) ||
!is_zero_pfn(pte_pfn(pte)))
mm: reinstate ZERO_PAGE KAMEZAWA Hiroyuki has observed customers of earlier kernels taking advantage of the ZERO_PAGE: which we stopped do_anonymous_page() from using in 2.6.24. And there were a couple of regression reports on LKML. Following suggestions from Linus, reinstate do_anonymous_page() use of the ZERO_PAGE; but this time avoid dirtying its struct page cacheline with (map)count updates - let vm_normal_page() regard it as abnormal. Use it only on arches which __HAVE_ARCH_PTE_SPECIAL (x86, s390, sh32, most powerpc): that's not essential, but minimizes additional branches (keeping them in the unlikely pte_special case); and incidentally excludes mips (some models of which needed eight colours of ZERO_PAGE to avoid costly exceptions). Don't be fanatical about avoiding ZERO_PAGE updates: get_user_pages() callers won't want to make exceptions for it, so increment its count there. Changes to mlock and migration? happily seems not needed. In most places it's quicker to check pfn than struct page address: prepare a __read_mostly zero_pfn for that. Does get_dump_page() still need its ZERO_PAGE check? probably not, but keep it anyway. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Acked-by: Rik van Riel <riel@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:03:30 +00:00
goto bad_page;
page = pte_page(pte);
}
if (flags & FOLL_GET)
get_page(page);
if (flags & FOLL_TOUCH) {
if ((flags & FOLL_WRITE) &&
!pte_dirty(pte) && !PageDirty(page))
set_page_dirty(page);
/*
* pte_mkyoung() would be more correct here, but atomic care
* is needed to avoid losing the dirty bit: it is easier to use
* mark_page_accessed().
*/
mark_page_accessed(page);
}
unlock:
pte_unmap_unlock(ptep, ptl);
out:
return page;
Reinstate ZERO_PAGE optimization in 'get_user_pages()' and fix XIP KAMEZAWA Hiroyuki and Oleg Nesterov point out that since the commit 557ed1fa2620dc119adb86b34c614e152a629a80 ("remove ZERO_PAGE") removed the ZERO_PAGE from the VM mappings, any users of get_user_pages() will generally now populate the VM with real empty pages needlessly. We used to get the ZERO_PAGE when we did the "handle_mm_fault()", but since fault handling no longer uses ZERO_PAGE for new anonymous pages, we now need to handle that special case in follow_page() instead. In particular, the removal of ZERO_PAGE effectively removed the core file writing optimization where we would skip writing pages that had not been populated at all, and increased memory pressure a lot by allocating all those useless newly zeroed pages. This reinstates the optimization by making the unmapped PTE case the same as for a non-existent page table, which already did this correctly. While at it, this also fixes the XIP case for follow_page(), where the caller could not differentiate between the case of a page that simply could not be used (because it had no "struct page" associated with it) and a page that just wasn't mapped. We do that by simply returning an error pointer for pages that could not be turned into a "struct page *". The error is arbitrarily picked to be EFAULT, since that was what get_user_pages() already used for the equivalent IO-mapped page case. [ Also removed an impossible test for pte_offset_map_lock() failing: that's not how that function works ] Acked-by: Oleg Nesterov <oleg@tv-sign.ru> Acked-by: Nick Piggin <npiggin@suse.de> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-20 18:18:25 +00:00
bad_page:
pte_unmap_unlock(ptep, ptl);
return ERR_PTR(-EFAULT);
no_page:
pte_unmap_unlock(ptep, ptl);
if (!pte_none(pte))
return page;
no_page_table:
/*
* When core dumping an enormous anonymous area that nobody
* has touched so far, we don't want to allocate unnecessary pages or
* page tables. Return error instead of NULL to skip handle_mm_fault,
* then get_dump_page() will return NULL to leave a hole in the dump.
* But we can only make this optimization where a hole would surely
* be zero-filled if handle_mm_fault() actually did handle it.
*/
if ((flags & FOLL_DUMP) &&
(!vma->vm_ops || !vma->vm_ops->fault))
return ERR_PTR(-EFAULT);
return page;
}
mlock: mlocked pages are unevictable Make sure that mlocked pages also live on the unevictable LRU, so kswapd will not scan them over and over again. This is achieved through various strategies: 1) add yet another page flag--PG_mlocked--to indicate that the page is locked for efficient testing in vmscan and, optionally, fault path. This allows early culling of unevictable pages, preventing them from getting to page_referenced()/try_to_unmap(). Also allows separate accounting of mlock'd pages, as Nick's original patch did. Note: Nick's original mlock patch used a PG_mlocked flag. I had removed this in favor of the PG_unevictable flag + an mlock_count [new page struct member]. I restored the PG_mlocked flag to eliminate the new count field. 2) add the mlock/unevictable infrastructure to mm/mlock.c, with internal APIs in mm/internal.h. This is a rework of Nick's original patch to these files, taking into account that mlocked pages are now kept on unevictable LRU list. 3) update vmscan.c:page_evictable() to check PageMlocked() and, if vma passed in, the vm_flags. Note that the vma will only be passed in for new pages in the fault path; and then only if the "cull unevictable pages in fault path" patch is included. 4) add try_to_unlock() to rmap.c to walk a page's rmap and ClearPageMlocked() if no other vmas have it mlocked. Reuses as much of try_to_unmap() as possible. This effectively replaces the use of one of the lru list links as an mlock count. If this mechanism let's pages in mlocked vmas leak through w/o PG_mlocked set [I don't know that it does], we should catch them later in try_to_unmap(). One hopes this will be rare, as it will be relatively expensive. Original mm/internal.h, mm/rmap.c and mm/mlock.c changes: Signed-off-by: Nick Piggin <npiggin@suse.de> splitlru: introduce __get_user_pages(): New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS. because current get_user_pages() can't grab PROT_NONE pages theresore it cause PROT_NONE pages can't munlock. [akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch] [akpm@linux-foundation.org: untangle patch interdependencies] [akpm@linux-foundation.org: fix things after out-of-order merging] [hugh@veritas.com: fix page-flags mess] [lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm'] [kosaki.motohiro@jp.fujitsu.com: build fix] [kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments] [kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 03:26:44 +00:00
int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, int nr_pages, unsigned int gup_flags,
struct page **pages, struct vm_area_struct **vmas)
{
int i;
unsigned long vm_flags;
if (nr_pages <= 0)
return 0;
VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
/*
* Require read or write permissions.
* If FOLL_FORCE is set, we only require the "MAY" flags.
*/
vm_flags = (gup_flags & FOLL_WRITE) ?
(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
vm_flags &= (gup_flags & FOLL_FORCE) ?
(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
i = 0;
do {
struct vm_area_struct *vma;
vma = find_extend_vma(mm, start);
if (!vma && in_gate_area(tsk, start)) {
unsigned long pg = start & PAGE_MASK;
struct vm_area_struct *gate_vma = get_gate_vma(tsk);
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
mlock: mlocked pages are unevictable Make sure that mlocked pages also live on the unevictable LRU, so kswapd will not scan them over and over again. This is achieved through various strategies: 1) add yet another page flag--PG_mlocked--to indicate that the page is locked for efficient testing in vmscan and, optionally, fault path. This allows early culling of unevictable pages, preventing them from getting to page_referenced()/try_to_unmap(). Also allows separate accounting of mlock'd pages, as Nick's original patch did. Note: Nick's original mlock patch used a PG_mlocked flag. I had removed this in favor of the PG_unevictable flag + an mlock_count [new page struct member]. I restored the PG_mlocked flag to eliminate the new count field. 2) add the mlock/unevictable infrastructure to mm/mlock.c, with internal APIs in mm/internal.h. This is a rework of Nick's original patch to these files, taking into account that mlocked pages are now kept on unevictable LRU list. 3) update vmscan.c:page_evictable() to check PageMlocked() and, if vma passed in, the vm_flags. Note that the vma will only be passed in for new pages in the fault path; and then only if the "cull unevictable pages in fault path" patch is included. 4) add try_to_unlock() to rmap.c to walk a page's rmap and ClearPageMlocked() if no other vmas have it mlocked. Reuses as much of try_to_unmap() as possible. This effectively replaces the use of one of the lru list links as an mlock count. If this mechanism let's pages in mlocked vmas leak through w/o PG_mlocked set [I don't know that it does], we should catch them later in try_to_unmap(). One hopes this will be rare, as it will be relatively expensive. Original mm/internal.h, mm/rmap.c and mm/mlock.c changes: Signed-off-by: Nick Piggin <npiggin@suse.de> splitlru: introduce __get_user_pages(): New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS. because current get_user_pages() can't grab PROT_NONE pages theresore it cause PROT_NONE pages can't munlock. [akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch] [akpm@linux-foundation.org: untangle patch interdependencies] [akpm@linux-foundation.org: fix things after out-of-order merging] [hugh@veritas.com: fix page-flags mess] [lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm'] [kosaki.motohiro@jp.fujitsu.com: build fix] [kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments] [kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 03:26:44 +00:00
/* user gate pages are read-only */
if (gup_flags & FOLL_WRITE)
return i ? : -EFAULT;
if (pg > TASK_SIZE)
pgd = pgd_offset_k(pg);
else
pgd = pgd_offset_gate(mm, pg);
BUG_ON(pgd_none(*pgd));
pud = pud_offset(pgd, pg);
BUG_ON(pud_none(*pud));
pmd = pmd_offset(pud, pg);
if (pmd_none(*pmd))
return i ? : -EFAULT;
pte = pte_offset_map(pmd, pg);
if (pte_none(*pte)) {
pte_unmap(pte);
return i ? : -EFAULT;
}
if (pages) {
struct page *page = vm_normal_page(gate_vma, start, *pte);
pages[i] = page;
if (page)
get_page(page);
}
pte_unmap(pte);
if (vmas)
vmas[i] = gate_vma;
i++;
start += PAGE_SIZE;
nr_pages--;
continue;
}
mlock: mlocked pages are unevictable Make sure that mlocked pages also live on the unevictable LRU, so kswapd will not scan them over and over again. This is achieved through various strategies: 1) add yet another page flag--PG_mlocked--to indicate that the page is locked for efficient testing in vmscan and, optionally, fault path. This allows early culling of unevictable pages, preventing them from getting to page_referenced()/try_to_unmap(). Also allows separate accounting of mlock'd pages, as Nick's original patch did. Note: Nick's original mlock patch used a PG_mlocked flag. I had removed this in favor of the PG_unevictable flag + an mlock_count [new page struct member]. I restored the PG_mlocked flag to eliminate the new count field. 2) add the mlock/unevictable infrastructure to mm/mlock.c, with internal APIs in mm/internal.h. This is a rework of Nick's original patch to these files, taking into account that mlocked pages are now kept on unevictable LRU list. 3) update vmscan.c:page_evictable() to check PageMlocked() and, if vma passed in, the vm_flags. Note that the vma will only be passed in for new pages in the fault path; and then only if the "cull unevictable pages in fault path" patch is included. 4) add try_to_unlock() to rmap.c to walk a page's rmap and ClearPageMlocked() if no other vmas have it mlocked. Reuses as much of try_to_unmap() as possible. This effectively replaces the use of one of the lru list links as an mlock count. If this mechanism let's pages in mlocked vmas leak through w/o PG_mlocked set [I don't know that it does], we should catch them later in try_to_unmap(). One hopes this will be rare, as it will be relatively expensive. Original mm/internal.h, mm/rmap.c and mm/mlock.c changes: Signed-off-by: Nick Piggin <npiggin@suse.de> splitlru: introduce __get_user_pages(): New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS. because current get_user_pages() can't grab PROT_NONE pages theresore it cause PROT_NONE pages can't munlock. [akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch] [akpm@linux-foundation.org: untangle patch interdependencies] [akpm@linux-foundation.org: fix things after out-of-order merging] [hugh@veritas.com: fix page-flags mess] [lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm'] [kosaki.motohiro@jp.fujitsu.com: build fix] [kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments] [kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 03:26:44 +00:00
if (!vma ||
(vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
!(vm_flags & vma->vm_flags))
return i ? : -EFAULT;
if (is_vm_hugetlb_page(vma)) {
i = follow_hugetlb_page(mm, vma, pages, vmas,
&start, &nr_pages, i, gup_flags);
continue;
}
do {
struct page *page;
unsigned int foll_flags = gup_flags;
/*
mm: make get_user_pages() interruptible The initial implementation of checking TIF_MEMDIE covers the cases of OOM killing. If the process has been OOM killed, the TIF_MEMDIE is set and it return immediately. This patch includes: 1. add the case that the SIGKILL is sent by user processes. The process can try to get_user_pages() unlimited memory even if a user process has sent a SIGKILL to it(maybe a monitor find the process exceed its memory limit and try to kill it). In the old implementation, the SIGKILL won't be handled until the get_user_pages() returns. 2. change the return value to be ERESTARTSYS. It makes no sense to return ENOMEM if the get_user_pages returned by getting a SIGKILL signal. Considering the general convention for a system call interrupted by a signal is ERESTARTNOSYS, so the current return value is consistant to that. Lee: An unfortunate side effect of "make-get_user_pages-interruptible" is that it prevents a SIGKILL'd task from munlock-ing pages that it had mlocked, resulting in freeing of mlocked pages. Freeing of mlocked pages, in itself, is not so bad. We just count them now--altho' I had hoped to remove this stat and add PG_MLOCKED to the free pages flags check. However, consider pages in shared libraries mapped by more than one task that a task mlocked--e.g., via mlockall(). If the task that mlocked the pages exits via SIGKILL, these pages would be left mlocked and unevictable. Proposed fix: Add another GUP flag to ignore sigkill when calling get_user_pages from munlock()--similar to Kosaki Motohiro's 'IGNORE_VMA_PERMISSIONS flag for the same purpose. We are not actually allocating memory in this case, which "make-get_user_pages-interruptible" intends to avoid. We're just munlocking pages that are already resident and mapped, and we're reusing get_user_pages() to access those pages. ?? Maybe we should combine 'IGNORE_VMA_PERMISSIONS and '_IGNORE_SIGKILL into a single flag: GUP_FLAGS_MUNLOCK ??? [Lee.Schermerhorn@hp.com: ignore sigkill in get_user_pages during munlock] Signed-off-by: Paul Menage <menage@google.com> Signed-off-by: Ying Han <yinghan@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Hugh Dickins <hugh@veritas.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Rohit Seth <rohitseth@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:40:18 +00:00
* If we have a pending SIGKILL, don't keep faulting
* pages and potentially allocating memory.
*/
if (unlikely(fatal_signal_pending(current)))
mm: make get_user_pages() interruptible The initial implementation of checking TIF_MEMDIE covers the cases of OOM killing. If the process has been OOM killed, the TIF_MEMDIE is set and it return immediately. This patch includes: 1. add the case that the SIGKILL is sent by user processes. The process can try to get_user_pages() unlimited memory even if a user process has sent a SIGKILL to it(maybe a monitor find the process exceed its memory limit and try to kill it). In the old implementation, the SIGKILL won't be handled until the get_user_pages() returns. 2. change the return value to be ERESTARTSYS. It makes no sense to return ENOMEM if the get_user_pages returned by getting a SIGKILL signal. Considering the general convention for a system call interrupted by a signal is ERESTARTNOSYS, so the current return value is consistant to that. Lee: An unfortunate side effect of "make-get_user_pages-interruptible" is that it prevents a SIGKILL'd task from munlock-ing pages that it had mlocked, resulting in freeing of mlocked pages. Freeing of mlocked pages, in itself, is not so bad. We just count them now--altho' I had hoped to remove this stat and add PG_MLOCKED to the free pages flags check. However, consider pages in shared libraries mapped by more than one task that a task mlocked--e.g., via mlockall(). If the task that mlocked the pages exits via SIGKILL, these pages would be left mlocked and unevictable. Proposed fix: Add another GUP flag to ignore sigkill when calling get_user_pages from munlock()--similar to Kosaki Motohiro's 'IGNORE_VMA_PERMISSIONS flag for the same purpose. We are not actually allocating memory in this case, which "make-get_user_pages-interruptible" intends to avoid. We're just munlocking pages that are already resident and mapped, and we're reusing get_user_pages() to access those pages. ?? Maybe we should combine 'IGNORE_VMA_PERMISSIONS and '_IGNORE_SIGKILL into a single flag: GUP_FLAGS_MUNLOCK ??? [Lee.Schermerhorn@hp.com: ignore sigkill in get_user_pages during munlock] Signed-off-by: Paul Menage <menage@google.com> Signed-off-by: Ying Han <yinghan@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Hugh Dickins <hugh@veritas.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Rohit Seth <rohitseth@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:40:18 +00:00
return i ? i : -ERESTARTSYS;
cond_resched();
while (!(page = follow_page(vma, start, foll_flags))) {
int ret;
ret = handle_mm_fault(mm, vma, start,
(foll_flags & FOLL_WRITE) ?
FAULT_FLAG_WRITE : 0);
mm: fault feedback #2 This patch completes Linus's wish that the fault return codes be made into bit flags, which I agree makes everything nicer. This requires requires all handle_mm_fault callers to be modified (possibly the modifications should go further and do things like fault accounting in handle_mm_fault -- however that would be for another patch). [akpm@linux-foundation.org: fix alpha build] [akpm@linux-foundation.org: fix s390 build] [akpm@linux-foundation.org: fix sparc build] [akpm@linux-foundation.org: fix sparc64 build] [akpm@linux-foundation.org: fix ia64 build] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Bryan Wu <bryan.wu@analog.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Matthew Wilcox <willy@debian.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Still apparently needs some ARM and PPC loving - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:47:05 +00:00
if (ret & VM_FAULT_ERROR) {
if (ret & VM_FAULT_OOM)
return i ? i : -ENOMEM;
else if (ret & VM_FAULT_SIGBUS)
return i ? i : -EFAULT;
BUG();
}
if (ret & VM_FAULT_MAJOR)
tsk->maj_flt++;
else
tsk->min_flt++;
/*
mm: fault feedback #2 This patch completes Linus's wish that the fault return codes be made into bit flags, which I agree makes everything nicer. This requires requires all handle_mm_fault callers to be modified (possibly the modifications should go further and do things like fault accounting in handle_mm_fault -- however that would be for another patch). [akpm@linux-foundation.org: fix alpha build] [akpm@linux-foundation.org: fix s390 build] [akpm@linux-foundation.org: fix sparc build] [akpm@linux-foundation.org: fix sparc64 build] [akpm@linux-foundation.org: fix ia64 build] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Bryan Wu <bryan.wu@analog.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Matthew Wilcox <willy@debian.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Still apparently needs some ARM and PPC loving - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:47:05 +00:00
* The VM_FAULT_WRITE bit tells us that
* do_wp_page has broken COW when necessary,
* even if maybe_mkwrite decided not to set
* pte_write. We can thus safely do subsequent
* page lookups as if they were reads. But only
* do so when looping for pte_write is futile:
* in some cases userspace may also be wanting
* to write to the gotten user page, which a
* read fault here might prevent (a readonly
* page might get reCOWed by userspace write).
*/
if ((ret & VM_FAULT_WRITE) &&
!(vma->vm_flags & VM_WRITE))
foll_flags &= ~FOLL_WRITE;
mm: fault feedback #2 This patch completes Linus's wish that the fault return codes be made into bit flags, which I agree makes everything nicer. This requires requires all handle_mm_fault callers to be modified (possibly the modifications should go further and do things like fault accounting in handle_mm_fault -- however that would be for another patch). [akpm@linux-foundation.org: fix alpha build] [akpm@linux-foundation.org: fix s390 build] [akpm@linux-foundation.org: fix sparc build] [akpm@linux-foundation.org: fix sparc64 build] [akpm@linux-foundation.org: fix ia64 build] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Bryan Wu <bryan.wu@analog.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Matthew Wilcox <willy@debian.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Still apparently needs some ARM and PPC loving - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:47:05 +00:00
[PATCH] page fault retry with NOPAGE_REFAULT Add a way for a no_page() handler to request a retry of the faulting instruction. It goes back to userland on page faults and just tries again in get_user_pages(). I added a cond_resched() in the loop in that later case. The problem I have with signal and spufs is an actual bug affecting apps and I don't see other ways of fixing it. In addition, we are having issues with infiniband and 64k pages (related to the way the hypervisor deals with some HV cards) that will require us to muck around with the MMU from within the IB driver's no_page() (it's a pSeries specific driver) and return to the caller the same way using NOPAGE_REFAULT. And to add to this, the graphics folks have been following a new approach of memory management that involves transparently swapping objects between video ram and main meory. To do that, they need installing PTEs from a no_page() handler as well and that also requires returning with NOPAGE_REFAULT. (For the later, they are currently using io_remap_pfn_range to install one PTE from no_page() which is a bit racy, we need to add a check for the PTE having already been installed afer taking the lock, but that's ok, they are only at the proof-of-concept stage. I'll send a patch adding a "clean" function to do that, we can use that from spufs too and get rid of the sparsemem hacks we do to create struct page for SPEs. Basically, that provides a generic solution for being able to have no_page() map hardware devices, which is something that I think sound driver folks have been asking for some time too). All of these things depend on having the NOPAGE_REFAULT exit path from no_page() handlers. Signed-off-by: Benjamin Herrenchmidt <benh@kernel.crashing.org> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-06 07:43:53 +00:00
cond_resched();
}
Reinstate ZERO_PAGE optimization in 'get_user_pages()' and fix XIP KAMEZAWA Hiroyuki and Oleg Nesterov point out that since the commit 557ed1fa2620dc119adb86b34c614e152a629a80 ("remove ZERO_PAGE") removed the ZERO_PAGE from the VM mappings, any users of get_user_pages() will generally now populate the VM with real empty pages needlessly. We used to get the ZERO_PAGE when we did the "handle_mm_fault()", but since fault handling no longer uses ZERO_PAGE for new anonymous pages, we now need to handle that special case in follow_page() instead. In particular, the removal of ZERO_PAGE effectively removed the core file writing optimization where we would skip writing pages that had not been populated at all, and increased memory pressure a lot by allocating all those useless newly zeroed pages. This reinstates the optimization by making the unmapped PTE case the same as for a non-existent page table, which already did this correctly. While at it, this also fixes the XIP case for follow_page(), where the caller could not differentiate between the case of a page that simply could not be used (because it had no "struct page" associated with it) and a page that just wasn't mapped. We do that by simply returning an error pointer for pages that could not be turned into a "struct page *". The error is arbitrarily picked to be EFAULT, since that was what get_user_pages() already used for the equivalent IO-mapped page case. [ Also removed an impossible test for pte_offset_map_lock() failing: that's not how that function works ] Acked-by: Oleg Nesterov <oleg@tv-sign.ru> Acked-by: Nick Piggin <npiggin@suse.de> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-20 18:18:25 +00:00
if (IS_ERR(page))
return i ? i : PTR_ERR(page);
if (pages) {
pages[i] = page;
flush_anon_page(vma, page, start);
flush_dcache_page(page);
}
if (vmas)
vmas[i] = vma;
i++;
start += PAGE_SIZE;
nr_pages--;
} while (nr_pages && start < vma->vm_end);
} while (nr_pages);
return i;
}
mlock: mlocked pages are unevictable Make sure that mlocked pages also live on the unevictable LRU, so kswapd will not scan them over and over again. This is achieved through various strategies: 1) add yet another page flag--PG_mlocked--to indicate that the page is locked for efficient testing in vmscan and, optionally, fault path. This allows early culling of unevictable pages, preventing them from getting to page_referenced()/try_to_unmap(). Also allows separate accounting of mlock'd pages, as Nick's original patch did. Note: Nick's original mlock patch used a PG_mlocked flag. I had removed this in favor of the PG_unevictable flag + an mlock_count [new page struct member]. I restored the PG_mlocked flag to eliminate the new count field. 2) add the mlock/unevictable infrastructure to mm/mlock.c, with internal APIs in mm/internal.h. This is a rework of Nick's original patch to these files, taking into account that mlocked pages are now kept on unevictable LRU list. 3) update vmscan.c:page_evictable() to check PageMlocked() and, if vma passed in, the vm_flags. Note that the vma will only be passed in for new pages in the fault path; and then only if the "cull unevictable pages in fault path" patch is included. 4) add try_to_unlock() to rmap.c to walk a page's rmap and ClearPageMlocked() if no other vmas have it mlocked. Reuses as much of try_to_unmap() as possible. This effectively replaces the use of one of the lru list links as an mlock count. If this mechanism let's pages in mlocked vmas leak through w/o PG_mlocked set [I don't know that it does], we should catch them later in try_to_unmap(). One hopes this will be rare, as it will be relatively expensive. Original mm/internal.h, mm/rmap.c and mm/mlock.c changes: Signed-off-by: Nick Piggin <npiggin@suse.de> splitlru: introduce __get_user_pages(): New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS. because current get_user_pages() can't grab PROT_NONE pages theresore it cause PROT_NONE pages can't munlock. [akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch] [akpm@linux-foundation.org: untangle patch interdependencies] [akpm@linux-foundation.org: fix things after out-of-order merging] [hugh@veritas.com: fix page-flags mess] [lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm'] [kosaki.motohiro@jp.fujitsu.com: build fix] [kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments] [kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 03:26:44 +00:00
/**
* get_user_pages() - pin user pages in memory
* @tsk: task_struct of target task
* @mm: mm_struct of target mm
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @write: whether pages will be written to by the caller
* @force: whether to force write access even if user mapping is
* readonly. This will result in the page being COWed even
* in MAP_SHARED mappings. You do not want this.
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long. Or NULL, if caller
* only intends to ensure the pages are faulted in.
* @vmas: array of pointers to vmas corresponding to each page.
* Or NULL if the caller does not require them.
*
* Returns number of pages pinned. This may be fewer than the number
* requested. If nr_pages is 0 or negative, returns 0. If no pages
* were pinned, returns -errno. Each page returned must be released
* with a put_page() call when it is finished with. vmas will only
* remain valid while mmap_sem is held.
*
* Must be called with mmap_sem held for read or write.
*
* get_user_pages walks a process's page tables and takes a reference to
* each struct page that each user address corresponds to at a given
* instant. That is, it takes the page that would be accessed if a user
* thread accesses the given user virtual address at that instant.
*
* This does not guarantee that the page exists in the user mappings when
* get_user_pages returns, and there may even be a completely different
* page there in some cases (eg. if mmapped pagecache has been invalidated
* and subsequently re faulted). However it does guarantee that the page
* won't be freed completely. And mostly callers simply care that the page
* contains data that was valid *at some point in time*. Typically, an IO
* or similar operation cannot guarantee anything stronger anyway because
* locks can't be held over the syscall boundary.
*
* If write=0, the page must not be written to. If the page is written to,
* set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
* after the page is finished with, and before put_page is called.
*
* get_user_pages is typically used for fewer-copy IO operations, to get a
* handle on the memory by some means other than accesses via the user virtual
* addresses. The pages may be submitted for DMA to devices or accessed via
* their kernel linear mapping (via the kmap APIs). Care should be taken to
* use the correct cache flushing APIs.
*
* See also get_user_pages_fast, for performance critical applications.
*/
mlock: mlocked pages are unevictable Make sure that mlocked pages also live on the unevictable LRU, so kswapd will not scan them over and over again. This is achieved through various strategies: 1) add yet another page flag--PG_mlocked--to indicate that the page is locked for efficient testing in vmscan and, optionally, fault path. This allows early culling of unevictable pages, preventing them from getting to page_referenced()/try_to_unmap(). Also allows separate accounting of mlock'd pages, as Nick's original patch did. Note: Nick's original mlock patch used a PG_mlocked flag. I had removed this in favor of the PG_unevictable flag + an mlock_count [new page struct member]. I restored the PG_mlocked flag to eliminate the new count field. 2) add the mlock/unevictable infrastructure to mm/mlock.c, with internal APIs in mm/internal.h. This is a rework of Nick's original patch to these files, taking into account that mlocked pages are now kept on unevictable LRU list. 3) update vmscan.c:page_evictable() to check PageMlocked() and, if vma passed in, the vm_flags. Note that the vma will only be passed in for new pages in the fault path; and then only if the "cull unevictable pages in fault path" patch is included. 4) add try_to_unlock() to rmap.c to walk a page's rmap and ClearPageMlocked() if no other vmas have it mlocked. Reuses as much of try_to_unmap() as possible. This effectively replaces the use of one of the lru list links as an mlock count. If this mechanism let's pages in mlocked vmas leak through w/o PG_mlocked set [I don't know that it does], we should catch them later in try_to_unmap(). One hopes this will be rare, as it will be relatively expensive. Original mm/internal.h, mm/rmap.c and mm/mlock.c changes: Signed-off-by: Nick Piggin <npiggin@suse.de> splitlru: introduce __get_user_pages(): New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS. because current get_user_pages() can't grab PROT_NONE pages theresore it cause PROT_NONE pages can't munlock. [akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch] [akpm@linux-foundation.org: untangle patch interdependencies] [akpm@linux-foundation.org: fix things after out-of-order merging] [hugh@veritas.com: fix page-flags mess] [lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm'] [kosaki.motohiro@jp.fujitsu.com: build fix] [kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments] [kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 03:26:44 +00:00
int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, int nr_pages, int write, int force,
mlock: mlocked pages are unevictable Make sure that mlocked pages also live on the unevictable LRU, so kswapd will not scan them over and over again. This is achieved through various strategies: 1) add yet another page flag--PG_mlocked--to indicate that the page is locked for efficient testing in vmscan and, optionally, fault path. This allows early culling of unevictable pages, preventing them from getting to page_referenced()/try_to_unmap(). Also allows separate accounting of mlock'd pages, as Nick's original patch did. Note: Nick's original mlock patch used a PG_mlocked flag. I had removed this in favor of the PG_unevictable flag + an mlock_count [new page struct member]. I restored the PG_mlocked flag to eliminate the new count field. 2) add the mlock/unevictable infrastructure to mm/mlock.c, with internal APIs in mm/internal.h. This is a rework of Nick's original patch to these files, taking into account that mlocked pages are now kept on unevictable LRU list. 3) update vmscan.c:page_evictable() to check PageMlocked() and, if vma passed in, the vm_flags. Note that the vma will only be passed in for new pages in the fault path; and then only if the "cull unevictable pages in fault path" patch is included. 4) add try_to_unlock() to rmap.c to walk a page's rmap and ClearPageMlocked() if no other vmas have it mlocked. Reuses as much of try_to_unmap() as possible. This effectively replaces the use of one of the lru list links as an mlock count. If this mechanism let's pages in mlocked vmas leak through w/o PG_mlocked set [I don't know that it does], we should catch them later in try_to_unmap(). One hopes this will be rare, as it will be relatively expensive. Original mm/internal.h, mm/rmap.c and mm/mlock.c changes: Signed-off-by: Nick Piggin <npiggin@suse.de> splitlru: introduce __get_user_pages(): New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS. because current get_user_pages() can't grab PROT_NONE pages theresore it cause PROT_NONE pages can't munlock. [akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch] [akpm@linux-foundation.org: untangle patch interdependencies] [akpm@linux-foundation.org: fix things after out-of-order merging] [hugh@veritas.com: fix page-flags mess] [lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm'] [kosaki.motohiro@jp.fujitsu.com: build fix] [kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments] [kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 03:26:44 +00:00
struct page **pages, struct vm_area_struct **vmas)
{
int flags = FOLL_TOUCH;
mlock: mlocked pages are unevictable Make sure that mlocked pages also live on the unevictable LRU, so kswapd will not scan them over and over again. This is achieved through various strategies: 1) add yet another page flag--PG_mlocked--to indicate that the page is locked for efficient testing in vmscan and, optionally, fault path. This allows early culling of unevictable pages, preventing them from getting to page_referenced()/try_to_unmap(). Also allows separate accounting of mlock'd pages, as Nick's original patch did. Note: Nick's original mlock patch used a PG_mlocked flag. I had removed this in favor of the PG_unevictable flag + an mlock_count [new page struct member]. I restored the PG_mlocked flag to eliminate the new count field. 2) add the mlock/unevictable infrastructure to mm/mlock.c, with internal APIs in mm/internal.h. This is a rework of Nick's original patch to these files, taking into account that mlocked pages are now kept on unevictable LRU list. 3) update vmscan.c:page_evictable() to check PageMlocked() and, if vma passed in, the vm_flags. Note that the vma will only be passed in for new pages in the fault path; and then only if the "cull unevictable pages in fault path" patch is included. 4) add try_to_unlock() to rmap.c to walk a page's rmap and ClearPageMlocked() if no other vmas have it mlocked. Reuses as much of try_to_unmap() as possible. This effectively replaces the use of one of the lru list links as an mlock count. If this mechanism let's pages in mlocked vmas leak through w/o PG_mlocked set [I don't know that it does], we should catch them later in try_to_unmap(). One hopes this will be rare, as it will be relatively expensive. Original mm/internal.h, mm/rmap.c and mm/mlock.c changes: Signed-off-by: Nick Piggin <npiggin@suse.de> splitlru: introduce __get_user_pages(): New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS. because current get_user_pages() can't grab PROT_NONE pages theresore it cause PROT_NONE pages can't munlock. [akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch] [akpm@linux-foundation.org: untangle patch interdependencies] [akpm@linux-foundation.org: fix things after out-of-order merging] [hugh@veritas.com: fix page-flags mess] [lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm'] [kosaki.motohiro@jp.fujitsu.com: build fix] [kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments] [kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 03:26:44 +00:00
if (pages)
flags |= FOLL_GET;
mlock: mlocked pages are unevictable Make sure that mlocked pages also live on the unevictable LRU, so kswapd will not scan them over and over again. This is achieved through various strategies: 1) add yet another page flag--PG_mlocked--to indicate that the page is locked for efficient testing in vmscan and, optionally, fault path. This allows early culling of unevictable pages, preventing them from getting to page_referenced()/try_to_unmap(). Also allows separate accounting of mlock'd pages, as Nick's original patch did. Note: Nick's original mlock patch used a PG_mlocked flag. I had removed this in favor of the PG_unevictable flag + an mlock_count [new page struct member]. I restored the PG_mlocked flag to eliminate the new count field. 2) add the mlock/unevictable infrastructure to mm/mlock.c, with internal APIs in mm/internal.h. This is a rework of Nick's original patch to these files, taking into account that mlocked pages are now kept on unevictable LRU list. 3) update vmscan.c:page_evictable() to check PageMlocked() and, if vma passed in, the vm_flags. Note that the vma will only be passed in for new pages in the fault path; and then only if the "cull unevictable pages in fault path" patch is included. 4) add try_to_unlock() to rmap.c to walk a page's rmap and ClearPageMlocked() if no other vmas have it mlocked. Reuses as much of try_to_unmap() as possible. This effectively replaces the use of one of the lru list links as an mlock count. If this mechanism let's pages in mlocked vmas leak through w/o PG_mlocked set [I don't know that it does], we should catch them later in try_to_unmap(). One hopes this will be rare, as it will be relatively expensive. Original mm/internal.h, mm/rmap.c and mm/mlock.c changes: Signed-off-by: Nick Piggin <npiggin@suse.de> splitlru: introduce __get_user_pages(): New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS. because current get_user_pages() can't grab PROT_NONE pages theresore it cause PROT_NONE pages can't munlock. [akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch] [akpm@linux-foundation.org: untangle patch interdependencies] [akpm@linux-foundation.org: fix things after out-of-order merging] [hugh@veritas.com: fix page-flags mess] [lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm'] [kosaki.motohiro@jp.fujitsu.com: build fix] [kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments] [kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 03:26:44 +00:00
if (write)
flags |= FOLL_WRITE;
mlock: mlocked pages are unevictable Make sure that mlocked pages also live on the unevictable LRU, so kswapd will not scan them over and over again. This is achieved through various strategies: 1) add yet another page flag--PG_mlocked--to indicate that the page is locked for efficient testing in vmscan and, optionally, fault path. This allows early culling of unevictable pages, preventing them from getting to page_referenced()/try_to_unmap(). Also allows separate accounting of mlock'd pages, as Nick's original patch did. Note: Nick's original mlock patch used a PG_mlocked flag. I had removed this in favor of the PG_unevictable flag + an mlock_count [new page struct member]. I restored the PG_mlocked flag to eliminate the new count field. 2) add the mlock/unevictable infrastructure to mm/mlock.c, with internal APIs in mm/internal.h. This is a rework of Nick's original patch to these files, taking into account that mlocked pages are now kept on unevictable LRU list. 3) update vmscan.c:page_evictable() to check PageMlocked() and, if vma passed in, the vm_flags. Note that the vma will only be passed in for new pages in the fault path; and then only if the "cull unevictable pages in fault path" patch is included. 4) add try_to_unlock() to rmap.c to walk a page's rmap and ClearPageMlocked() if no other vmas have it mlocked. Reuses as much of try_to_unmap() as possible. This effectively replaces the use of one of the lru list links as an mlock count. If this mechanism let's pages in mlocked vmas leak through w/o PG_mlocked set [I don't know that it does], we should catch them later in try_to_unmap(). One hopes this will be rare, as it will be relatively expensive. Original mm/internal.h, mm/rmap.c and mm/mlock.c changes: Signed-off-by: Nick Piggin <npiggin@suse.de> splitlru: introduce __get_user_pages(): New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS. because current get_user_pages() can't grab PROT_NONE pages theresore it cause PROT_NONE pages can't munlock. [akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch] [akpm@linux-foundation.org: untangle patch interdependencies] [akpm@linux-foundation.org: fix things after out-of-order merging] [hugh@veritas.com: fix page-flags mess] [lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm'] [kosaki.motohiro@jp.fujitsu.com: build fix] [kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments] [kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 03:26:44 +00:00
if (force)
flags |= FOLL_FORCE;
mlock: mlocked pages are unevictable Make sure that mlocked pages also live on the unevictable LRU, so kswapd will not scan them over and over again. This is achieved through various strategies: 1) add yet another page flag--PG_mlocked--to indicate that the page is locked for efficient testing in vmscan and, optionally, fault path. This allows early culling of unevictable pages, preventing them from getting to page_referenced()/try_to_unmap(). Also allows separate accounting of mlock'd pages, as Nick's original patch did. Note: Nick's original mlock patch used a PG_mlocked flag. I had removed this in favor of the PG_unevictable flag + an mlock_count [new page struct member]. I restored the PG_mlocked flag to eliminate the new count field. 2) add the mlock/unevictable infrastructure to mm/mlock.c, with internal APIs in mm/internal.h. This is a rework of Nick's original patch to these files, taking into account that mlocked pages are now kept on unevictable LRU list. 3) update vmscan.c:page_evictable() to check PageMlocked() and, if vma passed in, the vm_flags. Note that the vma will only be passed in for new pages in the fault path; and then only if the "cull unevictable pages in fault path" patch is included. 4) add try_to_unlock() to rmap.c to walk a page's rmap and ClearPageMlocked() if no other vmas have it mlocked. Reuses as much of try_to_unmap() as possible. This effectively replaces the use of one of the lru list links as an mlock count. If this mechanism let's pages in mlocked vmas leak through w/o PG_mlocked set [I don't know that it does], we should catch them later in try_to_unmap(). One hopes this will be rare, as it will be relatively expensive. Original mm/internal.h, mm/rmap.c and mm/mlock.c changes: Signed-off-by: Nick Piggin <npiggin@suse.de> splitlru: introduce __get_user_pages(): New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS. because current get_user_pages() can't grab PROT_NONE pages theresore it cause PROT_NONE pages can't munlock. [akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch] [akpm@linux-foundation.org: untangle patch interdependencies] [akpm@linux-foundation.org: fix things after out-of-order merging] [hugh@veritas.com: fix page-flags mess] [lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm'] [kosaki.motohiro@jp.fujitsu.com: build fix] [kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments] [kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 03:26:44 +00:00
return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
mlock: mlocked pages are unevictable Make sure that mlocked pages also live on the unevictable LRU, so kswapd will not scan them over and over again. This is achieved through various strategies: 1) add yet another page flag--PG_mlocked--to indicate that the page is locked for efficient testing in vmscan and, optionally, fault path. This allows early culling of unevictable pages, preventing them from getting to page_referenced()/try_to_unmap(). Also allows separate accounting of mlock'd pages, as Nick's original patch did. Note: Nick's original mlock patch used a PG_mlocked flag. I had removed this in favor of the PG_unevictable flag + an mlock_count [new page struct member]. I restored the PG_mlocked flag to eliminate the new count field. 2) add the mlock/unevictable infrastructure to mm/mlock.c, with internal APIs in mm/internal.h. This is a rework of Nick's original patch to these files, taking into account that mlocked pages are now kept on unevictable LRU list. 3) update vmscan.c:page_evictable() to check PageMlocked() and, if vma passed in, the vm_flags. Note that the vma will only be passed in for new pages in the fault path; and then only if the "cull unevictable pages in fault path" patch is included. 4) add try_to_unlock() to rmap.c to walk a page's rmap and ClearPageMlocked() if no other vmas have it mlocked. Reuses as much of try_to_unmap() as possible. This effectively replaces the use of one of the lru list links as an mlock count. If this mechanism let's pages in mlocked vmas leak through w/o PG_mlocked set [I don't know that it does], we should catch them later in try_to_unmap(). One hopes this will be rare, as it will be relatively expensive. Original mm/internal.h, mm/rmap.c and mm/mlock.c changes: Signed-off-by: Nick Piggin <npiggin@suse.de> splitlru: introduce __get_user_pages(): New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS. because current get_user_pages() can't grab PROT_NONE pages theresore it cause PROT_NONE pages can't munlock. [akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch] [akpm@linux-foundation.org: untangle patch interdependencies] [akpm@linux-foundation.org: fix things after out-of-order merging] [hugh@veritas.com: fix page-flags mess] [lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm'] [kosaki.motohiro@jp.fujitsu.com: build fix] [kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments] [kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 03:26:44 +00:00
}
EXPORT_SYMBOL(get_user_pages);
/**
* get_dump_page() - pin user page in memory while writing it to core dump
* @addr: user address
*
* Returns struct page pointer of user page pinned for dump,
* to be freed afterwards by page_cache_release() or put_page().
*
* Returns NULL on any kind of failure - a hole must then be inserted into
* the corefile, to preserve alignment with its headers; and also returns
* NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
* allowing a hole to be left in the corefile to save diskspace.
*
* Called without mmap_sem, but after all other threads have been killed.
*/
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
struct vm_area_struct *vma;
struct page *page;
if (__get_user_pages(current, current->mm, addr, 1,
FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
return NULL;
flush_cache_page(vma, addr, page_to_pfn(page));
return page;
}
#endif /* CONFIG_ELF_CORE */
pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
spinlock_t **ptl)
{
pgd_t * pgd = pgd_offset(mm, addr);
pud_t * pud = pud_alloc(mm, pgd, addr);
if (pud) {
pmd_t * pmd = pmd_alloc(mm, pud, addr);
if (pmd)
return pte_alloc_map_lock(mm, pmd, addr, ptl);
}
return NULL;
}
/*
* This is the old fallback for page remapping.
*
* For historical reasons, it only allows reserved pages. Only
* old drivers should use this, and they needed to mark their
* pages reserved for the old functions anyway.
*/
static int insert_page(struct vm_area_struct *vma, unsigned long addr,
struct page *page, pgprot_t prot)
{
struct mm_struct *mm = vma->vm_mm;
int retval;
pte_t *pte;
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
spinlock_t *ptl;
retval = -EINVAL;
if (PageAnon(page))
goto out;
retval = -ENOMEM;
flush_dcache_page(page);
pte = get_locked_pte(mm, addr, &ptl);
if (!pte)
goto out;
retval = -EBUSY;
if (!pte_none(*pte))
goto out_unlock;
/* Ok, finally just insert the thing.. */
get_page(page);
inc_mm_counter(mm, file_rss);
page_add_file_rmap(page);
set_pte_at(mm, addr, pte, mk_pte(page, prot));
retval = 0;
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
pte_unmap_unlock(pte, ptl);
return retval;
out_unlock:
pte_unmap_unlock(pte, ptl);
out:
return retval;
}
/**
* vm_insert_page - insert single page into user vma
* @vma: user vma to map to
* @addr: target user address of this page
* @page: source kernel page
*
* This allows drivers to insert individual pages they've allocated
* into a user vma.
*
* The page has to be a nice clean _individual_ kernel allocation.
* If you allocate a compound page, you need to have marked it as
* such (__GFP_COMP), or manually just split the page up yourself
* (see split_page()).
*
* NOTE! Traditionally this was done with "remap_pfn_range()" which
* took an arbitrary page protection parameter. This doesn't allow
* that. Your vma protection will have to be set up correctly, which
* means that if you want a shared writable mapping, you'd better
* ask for a shared writable mapping!
*
* The page does not need to be reserved.
*/
int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
struct page *page)
{
if (addr < vma->vm_start || addr >= vma->vm_end)
return -EFAULT;
if (!page_count(page))
return -EINVAL;
vma->vm_flags |= VM_INSERTPAGE;
return insert_page(vma, addr, page, vma->vm_page_prot);
}
EXPORT_SYMBOL(vm_insert_page);
static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn, pgprot_t prot)
{
struct mm_struct *mm = vma->vm_mm;
int retval;
pte_t *pte, entry;
spinlock_t *ptl;
retval = -ENOMEM;
pte = get_locked_pte(mm, addr, &ptl);
if (!pte)
goto out;
retval = -EBUSY;
if (!pte_none(*pte))
goto out_unlock;
/* Ok, finally just insert the thing.. */
entry = pte_mkspecial(pfn_pte(pfn, prot));
set_pte_at(mm, addr, pte, entry);
update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
retval = 0;
out_unlock:
pte_unmap_unlock(pte, ptl);
out:
return retval;
}
/**
* vm_insert_pfn - insert single pfn into user vma
* @vma: user vma to map to
* @addr: target user address of this page
* @pfn: source kernel pfn
*
* Similar to vm_inert_page, this allows drivers to insert individual pages
* they've allocated into a user vma. Same comments apply.
*
* This function should only be called from a vm_ops->fault handler, and
* in that case the handler should return NULL.
*
* vma cannot be a COW mapping.
*
* As this is called only for pages that do not currently exist, we
* do not need to flush old virtual caches or the TLB.
*/
int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn)
{
int ret;
pgprot_t pgprot = vma->vm_page_prot;
mm: introduce pte_special pte bit s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory model (which is more dynamic than most). Instead, they had proposed to implement it with an additional path through vm_normal_page(), using a bit in the pte to determine whether or not the page should be refcounted: vm_normal_page() { ... if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; #else if (!pfn_valid(pfn)) return NULL; #endif goto out; } ... } This is fine, however if we are allowed to use a bit in the pte to determine refcountedness, we can use that to _completely_ replace all the vma based schemes. So instead of adding more cases to the already complex vma-based scheme, we can have a clearly seperate and simple pte-based scheme (and get slightly better code generation in the process): vm_normal_page() { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; return pte_page(pte); #else ... #endif } And finally, we may rather make this concept usable by any architecture rather than making it s390 only, so implement a new type of pte state for this. Unfortunately the old vma based code must stay, because some architectures may not be able to spare pte bits. This makes vm_normal_page a little bit more ugly than we would like, but the 2 cases are clearly seperate. So introduce a pte_special pte state, and use it in mm/memory.c. It is currently a noop for all architectures, so this doesn't actually result in any compiled code changes to mm/memory.o. BTW: I haven't put vm_normal_page() into arch code as-per an earlier suggestion. The reason is that, regardless of where vm_normal_page is actually implemented, the *abstraction* is still exactly the same. Also, while it depends on whether the architecture has pte_special or not, that is the only two possible cases, and it really isn't an arch specific function -- the role of the arch code should be to provide primitive functions and accessors with which to build the core code; pte_special does that. We do not want architectures to know or care about vm_normal_page itself, and we definitely don't want them being able to invent something new there out of sight of mm/ code. If we made vm_normal_page an arch function, then we have to make vm_insert_mixed (next patch) an arch function too. So I don't think moving it to arch code fundamentally improves any abstractions, while it does practically make the code more difficult to follow, for both mm and arch developers, and easier to misuse. [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:13:00 +00:00
/*
* Technically, architectures with pte_special can avoid all these
* restrictions (same for remap_pfn_range). However we would like
* consistency in testing and feature parity among all, so we should
* try to keep these invariants in place for everybody.
*/
mm: introduce VM_MIXEDMAP This series introduces some important infrastructure work. The overall result is that: 1. We now support XIP backed filesystems using memory that have no struct page allocated to them. And patches 6 and 7 actually implement this for s390. This is pretty important in a number of cases. As far as I understand, in the case of virtualisation (eg. s390), each guest may mount a readonly copy of the same filesystem (eg. the distro). Currently, guests need to allocate struct pages for this image. So if you have 100 guests, you already need to allocate more memory for the struct pages than the size of the image. I think. (Carsten?) For other (eg. embedded) systems, you may have a very large non- volatile filesystem. If you have to have struct pages for this, then your RAM consumption will go up proportionally to fs size. Even though it is just a small proportion, the RAM can be much more costly eg in terms of power, so every KB less that Linux uses makes it more attractive to a lot of these guys. 2. VM_MIXEDMAP allows us to support mappings where you actually do want to refcount _some_ pages in the mapping, but not others, and support COW on arbitrary (non-linear) mappings. Jared needs this for his NVRAM filesystem in progress. Future iterations of this filesystem will most likely want to migrate pages between pagecache and XIP backing, which is where the requirement for mixed (some refcounted, some not) comes from. 3. pte_special also has a peripheral usage that I need for my lockless get_user_pages patch. That was shown to speed up "oltp" on db2 by 10% on a 2 socket system, which is kind of significant because they scrounge for months to try to find 0.1% improvement on these workloads. I'm hoping we might finally be faster than AIX on pSeries with this :). My reference to lockless get_user_pages is not meant to justify this patchset (which doesn't include lockless gup), but just to show that pte_special is not some s390 specific thing that should be hidden in arch code or xip code: I definitely want to use it on at least x86 and powerpc as well. This patch: Introduce a new type of mapping, VM_MIXEDMAP. This is unlike VM_PFNMAP in that it can support COW mappings of arbitrary ranges including ranges without struct page *and* ranges with a struct page that we actually want to refcount (PFNMAP can only support COW in those cases where the un-COW-ed translations are mapped linearly in the virtual address, and can only support non refcounted ranges). VM_MIXEDMAP achieves this by refcounting all pfn_valid pages, and not refcounting !pfn_valid pages (which is not an option for VM_PFNMAP, because it needs to avoid refcounting pfn_valid pages eg. for /dev/mem mappings). Signed-off-by: Jared Hulbert <jaredeh@gmail.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:12:58 +00:00
BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
(VM_PFNMAP|VM_MIXEDMAP));
BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
if (addr < vma->vm_start || addr >= vma->vm_end)
return -EFAULT;
if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
return -EINVAL;
ret = insert_pfn(vma, addr, pfn, pgprot);
if (ret)
untrack_pfn_vma(vma, pfn, PAGE_SIZE);
return ret;
}
EXPORT_SYMBOL(vm_insert_pfn);
int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn)
{
BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
if (addr < vma->vm_start || addr >= vma->vm_end)
return -EFAULT;
/*
* If we don't have pte special, then we have to use the pfn_valid()
* based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
* refcount the page if pfn_valid is true (hence insert_page rather
* than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
* without pte special, it would there be refcounted as a normal page.
*/
if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
struct page *page;
page = pfn_to_page(pfn);
return insert_page(vma, addr, page, vma->vm_page_prot);
}
return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
}
EXPORT_SYMBOL(vm_insert_mixed);
/*
* maps a range of physical memory into the requested pages. the old
* mappings are removed. any references to nonexistent pages results
* in null mappings (currently treated as "copy-on-access")
*/
static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
unsigned long addr, unsigned long end,
unsigned long pfn, pgprot_t prot)
{
pte_t *pte;
spinlock_t *ptl;
pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
if (!pte)
return -ENOMEM;
arch_enter_lazy_mmu_mode();
do {
BUG_ON(!pte_none(*pte));
mm: introduce pte_special pte bit s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory model (which is more dynamic than most). Instead, they had proposed to implement it with an additional path through vm_normal_page(), using a bit in the pte to determine whether or not the page should be refcounted: vm_normal_page() { ... if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; #else if (!pfn_valid(pfn)) return NULL; #endif goto out; } ... } This is fine, however if we are allowed to use a bit in the pte to determine refcountedness, we can use that to _completely_ replace all the vma based schemes. So instead of adding more cases to the already complex vma-based scheme, we can have a clearly seperate and simple pte-based scheme (and get slightly better code generation in the process): vm_normal_page() { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; return pte_page(pte); #else ... #endif } And finally, we may rather make this concept usable by any architecture rather than making it s390 only, so implement a new type of pte state for this. Unfortunately the old vma based code must stay, because some architectures may not be able to spare pte bits. This makes vm_normal_page a little bit more ugly than we would like, but the 2 cases are clearly seperate. So introduce a pte_special pte state, and use it in mm/memory.c. It is currently a noop for all architectures, so this doesn't actually result in any compiled code changes to mm/memory.o. BTW: I haven't put vm_normal_page() into arch code as-per an earlier suggestion. The reason is that, regardless of where vm_normal_page is actually implemented, the *abstraction* is still exactly the same. Also, while it depends on whether the architecture has pte_special or not, that is the only two possible cases, and it really isn't an arch specific function -- the role of the arch code should be to provide primitive functions and accessors with which to build the core code; pte_special does that. We do not want architectures to know or care about vm_normal_page itself, and we definitely don't want them being able to invent something new there out of sight of mm/ code. If we made vm_normal_page an arch function, then we have to make vm_insert_mixed (next patch) an arch function too. So I don't think moving it to arch code fundamentally improves any abstractions, while it does practically make the code more difficult to follow, for both mm and arch developers, and easier to misuse. [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:13:00 +00:00
set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
pfn++;
} while (pte++, addr += PAGE_SIZE, addr != end);
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(pte - 1, ptl);
return 0;
}
static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
unsigned long addr, unsigned long end,
unsigned long pfn, pgprot_t prot)
{
pmd_t *pmd;
unsigned long next;
pfn -= addr >> PAGE_SHIFT;
pmd = pmd_alloc(mm, pud, addr);
if (!pmd)
return -ENOMEM;
do {
next = pmd_addr_end(addr, end);
if (remap_pte_range(mm, pmd, addr, next,
pfn + (addr >> PAGE_SHIFT), prot))
return -ENOMEM;
} while (pmd++, addr = next, addr != end);
return 0;
}
static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
unsigned long addr, unsigned long end,
unsigned long pfn, pgprot_t prot)
{
pud_t *pud;
unsigned long next;
pfn -= addr >> PAGE_SHIFT;
pud = pud_alloc(mm, pgd, addr);
if (!pud)
return -ENOMEM;
do {
next = pud_addr_end(addr, end);
if (remap_pmd_range(mm, pud, addr, next,
pfn + (addr >> PAGE_SHIFT), prot))
return -ENOMEM;
} while (pud++, addr = next, addr != end);
return 0;
}
/**
* remap_pfn_range - remap kernel memory to userspace
* @vma: user vma to map to
* @addr: target user address to start at
* @pfn: physical address of kernel memory
* @size: size of map area
* @prot: page protection flags for this mapping
*
* Note: this is only safe if the mm semaphore is held when called.
*/
int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn, unsigned long size, pgprot_t prot)
{
pgd_t *pgd;
unsigned long next;
unsigned long end = addr + PAGE_ALIGN(size);
struct mm_struct *mm = vma->vm_mm;
int err;
/*
* Physically remapped pages are special. Tell the
* rest of the world about it:
* VM_IO tells people not to look at these pages
* (accesses can have side effects).
* VM_RESERVED is specified all over the place, because
* in 2.4 it kept swapout's vma scan off this vma; but
* in 2.6 the LRU scan won't even find its pages, so this
* flag means no more than count its pages in reserved_vm,
* and omit it from core dump, even when VM_IO turned off.
* VM_PFNMAP tells the core MM that the base pages are just
* raw PFN mappings, and do not have a "struct page" associated
* with them.
*
* There's a horrible special case to handle copy-on-write
* behaviour that some programs depend on. We mark the "original"
* un-COW'ed pages by matching them up with "vma->vm_pgoff".
*/
if (addr == vma->vm_start && end == vma->vm_end) {
vma->vm_pgoff = pfn;
vma->vm_flags |= VM_PFN_AT_MMAP;
} else if (is_cow_mapping(vma->vm_flags))
x86: PAT: store vm_pgoff for all linear_over_vma_region mappings - v3 Impact: Code transformation, new functions added should have no effect. Drivers use mmap followed by pgprot_* and remap_pfn_range or vm_insert_pfn, in order to export reserved memory to userspace. Currently, such mappings are not tracked and hence not kept consistent with other mappings (/dev/mem, pci resource, ioremap) for the sme memory, that may exist in the system. The following patchset adds x86 PAT attribute tracking and untracking for pfnmap related APIs. First three patches in the patchset are changing the generic mm code to fit in this tracking. Last four patches are x86 specific to make things work with x86 PAT code. The patchset aso introduces pgprot_writecombine interface, which gives writecombine mapping when enabled, falling back to pgprot_noncached otherwise. This patch: While working on x86 PAT, we faced some hurdles with trackking remap_pfn_range() regions, as we do not have any information to say whether that PFNMAP mapping is linear for the entire vma range or it is smaller granularity regions within the vma. A simple solution to this is to use vm_pgoff as an indicator for linear mapping over the vma region. Currently, remap_pfn_range only sets vm_pgoff for COW mappings. Below patch changes the logic and sets the vm_pgoff irrespective of COW. This will still not be enough for the case where pfn is zero (vma region mapped to physical address zero). But, for all the other cases, we can look at pfnmap VMAs and say whether the mappng is for the entire vma region or not. Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2008-12-18 19:41:27 +00:00
return -EINVAL;
vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
if (err) {
/*
* To indicate that track_pfn related cleanup is not
* needed from higher level routine calling unmap_vmas
*/
vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
vma->vm_flags &= ~VM_PFN_AT_MMAP;
return -EINVAL;
}
BUG_ON(addr >= end);
pfn -= addr >> PAGE_SHIFT;
pgd = pgd_offset(mm, addr);
flush_cache_range(vma, addr, end);
do {
next = pgd_addr_end(addr, end);
err = remap_pud_range(mm, pgd, addr, next,
pfn + (addr >> PAGE_SHIFT), prot);
if (err)
break;
} while (pgd++, addr = next, addr != end);
if (err)
untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
return err;
}
EXPORT_SYMBOL(remap_pfn_range);
static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
unsigned long addr, unsigned long end,
pte_fn_t fn, void *data)
{
pte_t *pte;
int err;
CONFIG_HIGHPTE vs. sub-page page tables. Background: I've implemented 1K/2K page tables for s390. These sub-page page tables are required to properly support the s390 virtualization instruction with KVM. The SIE instruction requires that the page tables have 256 page table entries (pte) followed by 256 page status table entries (pgste). The pgstes are only required if the process is using the SIE instruction. The pgstes are updated by the hardware and by the hypervisor for a number of reasons, one of them is dirty and reference bit tracking. To avoid wasting memory the standard pte table allocation should return 1K/2K (31/64 bit) and 2K/4K if the process is using SIE. Problem: Page size on s390 is 4K, page table size is 1K or 2K. That means the s390 version for pte_alloc_one cannot return a pointer to a struct page. Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one cannot return a pointer to a pte either, since that would require more than 32 bit for the return value of pte_alloc_one (and the pte * would not be accessible since its not kmapped). Solution: The only solution I found to this dilemma is a new typedef: a pgtable_t. For s390 pgtable_t will be a (pte *) - to be introduced with a later patch. For everybody else it will be a (struct page *). The additional problem with the initialization of the ptl lock and the NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and a destructor pgtable_page_dtor. The page table allocation and free functions need to call these two whenever a page table page is allocated or freed. pmd_populate will get a pgtable_t instead of a struct page pointer. To get the pgtable_t back from a pmd entry that has been installed with pmd_populate a new function pmd_pgtable is added. It replaces the pmd_page call in free_pte_range and apply_to_pte_range. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 12:22:04 +00:00
pgtable_t token;
spinlock_t *uninitialized_var(ptl);
pte = (mm == &init_mm) ?
pte_alloc_kernel(pmd, addr) :
pte_alloc_map_lock(mm, pmd, addr, &ptl);
if (!pte)
return -ENOMEM;
BUG_ON(pmd_huge(*pmd));
arch_enter_lazy_mmu_mode();
CONFIG_HIGHPTE vs. sub-page page tables. Background: I've implemented 1K/2K page tables for s390. These sub-page page tables are required to properly support the s390 virtualization instruction with KVM. The SIE instruction requires that the page tables have 256 page table entries (pte) followed by 256 page status table entries (pgste). The pgstes are only required if the process is using the SIE instruction. The pgstes are updated by the hardware and by the hypervisor for a number of reasons, one of them is dirty and reference bit tracking. To avoid wasting memory the standard pte table allocation should return 1K/2K (31/64 bit) and 2K/4K if the process is using SIE. Problem: Page size on s390 is 4K, page table size is 1K or 2K. That means the s390 version for pte_alloc_one cannot return a pointer to a struct page. Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one cannot return a pointer to a pte either, since that would require more than 32 bit for the return value of pte_alloc_one (and the pte * would not be accessible since its not kmapped). Solution: The only solution I found to this dilemma is a new typedef: a pgtable_t. For s390 pgtable_t will be a (pte *) - to be introduced with a later patch. For everybody else it will be a (struct page *). The additional problem with the initialization of the ptl lock and the NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and a destructor pgtable_page_dtor. The page table allocation and free functions need to call these two whenever a page table page is allocated or freed. pmd_populate will get a pgtable_t instead of a struct page pointer. To get the pgtable_t back from a pmd entry that has been installed with pmd_populate a new function pmd_pgtable is added. It replaces the pmd_page call in free_pte_range and apply_to_pte_range. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 12:22:04 +00:00
token = pmd_pgtable(*pmd);
do {
CONFIG_HIGHPTE vs. sub-page page tables. Background: I've implemented 1K/2K page tables for s390. These sub-page page tables are required to properly support the s390 virtualization instruction with KVM. The SIE instruction requires that the page tables have 256 page table entries (pte) followed by 256 page status table entries (pgste). The pgstes are only required if the process is using the SIE instruction. The pgstes are updated by the hardware and by the hypervisor for a number of reasons, one of them is dirty and reference bit tracking. To avoid wasting memory the standard pte table allocation should return 1K/2K (31/64 bit) and 2K/4K if the process is using SIE. Problem: Page size on s390 is 4K, page table size is 1K or 2K. That means the s390 version for pte_alloc_one cannot return a pointer to a struct page. Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one cannot return a pointer to a pte either, since that would require more than 32 bit for the return value of pte_alloc_one (and the pte * would not be accessible since its not kmapped). Solution: The only solution I found to this dilemma is a new typedef: a pgtable_t. For s390 pgtable_t will be a (pte *) - to be introduced with a later patch. For everybody else it will be a (struct page *). The additional problem with the initialization of the ptl lock and the NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and a destructor pgtable_page_dtor. The page table allocation and free functions need to call these two whenever a page table page is allocated or freed. pmd_populate will get a pgtable_t instead of a struct page pointer. To get the pgtable_t back from a pmd entry that has been installed with pmd_populate a new function pmd_pgtable is added. It replaces the pmd_page call in free_pte_range and apply_to_pte_range. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 12:22:04 +00:00
err = fn(pte, token, addr, data);
if (err)
break;
} while (pte++, addr += PAGE_SIZE, addr != end);
arch_leave_lazy_mmu_mode();
if (mm != &init_mm)
pte_unmap_unlock(pte-1, ptl);
return err;
}
static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
unsigned long addr, unsigned long end,
pte_fn_t fn, void *data)
{
pmd_t *pmd;
unsigned long next;
int err;
BUG_ON(pud_huge(*pud));
pmd = pmd_alloc(mm, pud, addr);
if (!pmd)
return -ENOMEM;
do {
next = pmd_addr_end(addr, end);
err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
if (err)
break;
} while (pmd++, addr = next, addr != end);
return err;
}
static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
unsigned long addr, unsigned long end,
pte_fn_t fn, void *data)
{
pud_t *pud;
unsigned long next;
int err;
pud = pud_alloc(mm, pgd, addr);
if (!pud)
return -ENOMEM;
do {
next = pud_addr_end(addr, end);
err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
if (err)
break;
} while (pud++, addr = next, addr != end);
return err;
}
/*
* Scan a region of virtual memory, filling in page tables as necessary
* and calling a provided function on each leaf page table.
*/
int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
unsigned long size, pte_fn_t fn, void *data)
{
pgd_t *pgd;
unsigned long next;
mmu-notifiers: core With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages. There are secondary MMUs (with secondary sptes and secondary tlbs) too. sptes in the kvm case are shadow pagetables, but when I say spte in mmu-notifier context, I mean "secondary pte". In GRU case there's no actual secondary pte and there's only a secondary tlb because the GRU secondary MMU has no knowledge about sptes and every secondary tlb miss event in the MMU always generates a page fault that has to be resolved by the CPU (this is not the case of KVM where the a secondary tlb miss will walk sptes in hardware and it will refill the secondary tlb transparently to software if the corresponding spte is present). The same way zap_page_range has to invalidate the pte before freeing the page, the spte (and secondary tlb) must also be invalidated before any page is freed and reused. Currently we take a page_count pin on every page mapped by sptes, but that means the pages can't be swapped whenever they're mapped by any spte because they're part of the guest working set. Furthermore a spte unmap event can immediately lead to a page to be freed when the pin is released (so requiring the same complex and relatively slow tlb_gather smp safe logic we have in zap_page_range and that can be avoided completely if the spte unmap event doesn't require an unpin of the page previously mapped in the secondary MMU). The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know when the VM is swapping or freeing or doing anything on the primary MMU so that the secondary MMU code can drop sptes before the pages are freed, avoiding all page pinning and allowing 100% reliable swapping of guest physical address space. Furthermore it avoids the code that teardown the mappings of the secondary MMU, to implement a logic like tlb_gather in zap_page_range that would require many IPI to flush other cpu tlbs, for each fixed number of spte unmapped. To make an example: if what happens on the primary MMU is a protection downgrade (from writeable to wrprotect) the secondary MMU mappings will be invalidated, and the next secondary-mmu-page-fault will call get_user_pages and trigger a do_wp_page through get_user_pages if it called get_user_pages with write=1, and it'll re-establishing an updated spte or secondary-tlb-mapping on the copied page. Or it will setup a readonly spte or readonly tlb mapping if it's a guest-read, if it calls get_user_pages with write=0. This is just an example. This allows to map any page pointed by any pte (and in turn visible in the primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an full MMU with both sptes and secondary-tlb like the shadow-pagetable layer with kvm), or a remote DMA in software like XPMEM (hence needing of schedule in XPMEM code to send the invalidate to the remote node, while no need to schedule in kvm/gru as it's an immediate event like invalidating primary-mmu pte). At least for KVM without this patch it's impossible to swap guests reliably. And having this feature and removing the page pin allows several other optimizations that simplify life considerably. Dependencies: 1) mm_take_all_locks() to register the mmu notifier when the whole VM isn't doing anything with "mm". This allows mmu notifier users to keep track if the VM is in the middle of the invalidate_range_begin/end critical section with an atomic counter incraese in range_begin and decreased in range_end. No secondary MMU page fault is allowed to map any spte or secondary tlb reference, while the VM is in the middle of range_begin/end as any page returned by get_user_pages in that critical section could later immediately be freed without any further ->invalidate_page notification (invalidate_range_begin/end works on ranges and ->invalidate_page isn't called immediately before freeing the page). To stop all page freeing and pagetable overwrites the mmap_sem must be taken in write mode and all other anon_vma/i_mmap locks must be taken too. 2) It'd be a waste to add branches in the VM if nobody could possibly run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of mmu notifiers, but this already allows to compile a KVM external module against a kernel with mmu notifiers enabled and from the next pull from kvm.git we'll start using them. And GRU/XPMEM will also be able to continue the development by enabling KVM=m in their config, until they submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n). This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM are all =n. The mmu_notifier_register call can fail because mm_take_all_locks may be interrupted by a signal and return -EINTR. Because mmu_notifier_reigster is used when a driver startup, a failure can be gracefully handled. Here an example of the change applied to kvm to register the mmu notifiers. Usually when a driver startups other allocations are required anyway and -ENOMEM failure paths exists already. struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); + int err; if (!kvm) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops; + err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm); + if (err) { + kfree(kvm); + return ERR_PTR(err); + } + return kvm; } mmu_notifier_unregister returns void and it's reliable. The patch also adds a few needed but missing includes that would prevent kernel to compile after these changes on non-x86 archs (x86 didn't need them by luck). [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix mm/filemap_xip.c build] [akpm@linux-foundation.org: fix mm/mmu_notifier.c build] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Kanoj Sarcar <kanojsarcar@yahoo.com> Cc: Roland Dreier <rdreier@cisco.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Chris Wright <chrisw@redhat.com> Cc: Marcelo Tosatti <marcelo@kvack.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Izik Eidus <izike@qumranet.com> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-28 22:46:29 +00:00
unsigned long start = addr, end = addr + size;
int err;
BUG_ON(addr >= end);
mmu-notifiers: core With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages. There are secondary MMUs (with secondary sptes and secondary tlbs) too. sptes in the kvm case are shadow pagetables, but when I say spte in mmu-notifier context, I mean "secondary pte". In GRU case there's no actual secondary pte and there's only a secondary tlb because the GRU secondary MMU has no knowledge about sptes and every secondary tlb miss event in the MMU always generates a page fault that has to be resolved by the CPU (this is not the case of KVM where the a secondary tlb miss will walk sptes in hardware and it will refill the secondary tlb transparently to software if the corresponding spte is present). The same way zap_page_range has to invalidate the pte before freeing the page, the spte (and secondary tlb) must also be invalidated before any page is freed and reused. Currently we take a page_count pin on every page mapped by sptes, but that means the pages can't be swapped whenever they're mapped by any spte because they're part of the guest working set. Furthermore a spte unmap event can immediately lead to a page to be freed when the pin is released (so requiring the same complex and relatively slow tlb_gather smp safe logic we have in zap_page_range and that can be avoided completely if the spte unmap event doesn't require an unpin of the page previously mapped in the secondary MMU). The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know when the VM is swapping or freeing or doing anything on the primary MMU so that the secondary MMU code can drop sptes before the pages are freed, avoiding all page pinning and allowing 100% reliable swapping of guest physical address space. Furthermore it avoids the code that teardown the mappings of the secondary MMU, to implement a logic like tlb_gather in zap_page_range that would require many IPI to flush other cpu tlbs, for each fixed number of spte unmapped. To make an example: if what happens on the primary MMU is a protection downgrade (from writeable to wrprotect) the secondary MMU mappings will be invalidated, and the next secondary-mmu-page-fault will call get_user_pages and trigger a do_wp_page through get_user_pages if it called get_user_pages with write=1, and it'll re-establishing an updated spte or secondary-tlb-mapping on the copied page. Or it will setup a readonly spte or readonly tlb mapping if it's a guest-read, if it calls get_user_pages with write=0. This is just an example. This allows to map any page pointed by any pte (and in turn visible in the primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an full MMU with both sptes and secondary-tlb like the shadow-pagetable layer with kvm), or a remote DMA in software like XPMEM (hence needing of schedule in XPMEM code to send the invalidate to the remote node, while no need to schedule in kvm/gru as it's an immediate event like invalidating primary-mmu pte). At least for KVM without this patch it's impossible to swap guests reliably. And having this feature and removing the page pin allows several other optimizations that simplify life considerably. Dependencies: 1) mm_take_all_locks() to register the mmu notifier when the whole VM isn't doing anything with "mm". This allows mmu notifier users to keep track if the VM is in the middle of the invalidate_range_begin/end critical section with an atomic counter incraese in range_begin and decreased in range_end. No secondary MMU page fault is allowed to map any spte or secondary tlb reference, while the VM is in the middle of range_begin/end as any page returned by get_user_pages in that critical section could later immediately be freed without any further ->invalidate_page notification (invalidate_range_begin/end works on ranges and ->invalidate_page isn't called immediately before freeing the page). To stop all page freeing and pagetable overwrites the mmap_sem must be taken in write mode and all other anon_vma/i_mmap locks must be taken too. 2) It'd be a waste to add branches in the VM if nobody could possibly run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of mmu notifiers, but this already allows to compile a KVM external module against a kernel with mmu notifiers enabled and from the next pull from kvm.git we'll start using them. And GRU/XPMEM will also be able to continue the development by enabling KVM=m in their config, until they submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n). This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM are all =n. The mmu_notifier_register call can fail because mm_take_all_locks may be interrupted by a signal and return -EINTR. Because mmu_notifier_reigster is used when a driver startup, a failure can be gracefully handled. Here an example of the change applied to kvm to register the mmu notifiers. Usually when a driver startups other allocations are required anyway and -ENOMEM failure paths exists already. struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); + int err; if (!kvm) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops; + err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm); + if (err) { + kfree(kvm); + return ERR_PTR(err); + } + return kvm; } mmu_notifier_unregister returns void and it's reliable. The patch also adds a few needed but missing includes that would prevent kernel to compile after these changes on non-x86 archs (x86 didn't need them by luck). [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix mm/filemap_xip.c build] [akpm@linux-foundation.org: fix mm/mmu_notifier.c build] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Kanoj Sarcar <kanojsarcar@yahoo.com> Cc: Roland Dreier <rdreier@cisco.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Chris Wright <chrisw@redhat.com> Cc: Marcelo Tosatti <marcelo@kvack.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Izik Eidus <izike@qumranet.com> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-28 22:46:29 +00:00
mmu_notifier_invalidate_range_start(mm, start, end);
pgd = pgd_offset(mm, addr);
do {
next = pgd_addr_end(addr, end);
err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
if (err)
break;
} while (pgd++, addr = next, addr != end);
mmu-notifiers: core With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages. There are secondary MMUs (with secondary sptes and secondary tlbs) too. sptes in the kvm case are shadow pagetables, but when I say spte in mmu-notifier context, I mean "secondary pte". In GRU case there's no actual secondary pte and there's only a secondary tlb because the GRU secondary MMU has no knowledge about sptes and every secondary tlb miss event in the MMU always generates a page fault that has to be resolved by the CPU (this is not the case of KVM where the a secondary tlb miss will walk sptes in hardware and it will refill the secondary tlb transparently to software if the corresponding spte is present). The same way zap_page_range has to invalidate the pte before freeing the page, the spte (and secondary tlb) must also be invalidated before any page is freed and reused. Currently we take a page_count pin on every page mapped by sptes, but that means the pages can't be swapped whenever they're mapped by any spte because they're part of the guest working set. Furthermore a spte unmap event can immediately lead to a page to be freed when the pin is released (so requiring the same complex and relatively slow tlb_gather smp safe logic we have in zap_page_range and that can be avoided completely if the spte unmap event doesn't require an unpin of the page previously mapped in the secondary MMU). The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know when the VM is swapping or freeing or doing anything on the primary MMU so that the secondary MMU code can drop sptes before the pages are freed, avoiding all page pinning and allowing 100% reliable swapping of guest physical address space. Furthermore it avoids the code that teardown the mappings of the secondary MMU, to implement a logic like tlb_gather in zap_page_range that would require many IPI to flush other cpu tlbs, for each fixed number of spte unmapped. To make an example: if what happens on the primary MMU is a protection downgrade (from writeable to wrprotect) the secondary MMU mappings will be invalidated, and the next secondary-mmu-page-fault will call get_user_pages and trigger a do_wp_page through get_user_pages if it called get_user_pages with write=1, and it'll re-establishing an updated spte or secondary-tlb-mapping on the copied page. Or it will setup a readonly spte or readonly tlb mapping if it's a guest-read, if it calls get_user_pages with write=0. This is just an example. This allows to map any page pointed by any pte (and in turn visible in the primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an full MMU with both sptes and secondary-tlb like the shadow-pagetable layer with kvm), or a remote DMA in software like XPMEM (hence needing of schedule in XPMEM code to send the invalidate to the remote node, while no need to schedule in kvm/gru as it's an immediate event like invalidating primary-mmu pte). At least for KVM without this patch it's impossible to swap guests reliably. And having this feature and removing the page pin allows several other optimizations that simplify life considerably. Dependencies: 1) mm_take_all_locks() to register the mmu notifier when the whole VM isn't doing anything with "mm". This allows mmu notifier users to keep track if the VM is in the middle of the invalidate_range_begin/end critical section with an atomic counter incraese in range_begin and decreased in range_end. No secondary MMU page fault is allowed to map any spte or secondary tlb reference, while the VM is in the middle of range_begin/end as any page returned by get_user_pages in that critical section could later immediately be freed without any further ->invalidate_page notification (invalidate_range_begin/end works on ranges and ->invalidate_page isn't called immediately before freeing the page). To stop all page freeing and pagetable overwrites the mmap_sem must be taken in write mode and all other anon_vma/i_mmap locks must be taken too. 2) It'd be a waste to add branches in the VM if nobody could possibly run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of mmu notifiers, but this already allows to compile a KVM external module against a kernel with mmu notifiers enabled and from the next pull from kvm.git we'll start using them. And GRU/XPMEM will also be able to continue the development by enabling KVM=m in their config, until they submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n). This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM are all =n. The mmu_notifier_register call can fail because mm_take_all_locks may be interrupted by a signal and return -EINTR. Because mmu_notifier_reigster is used when a driver startup, a failure can be gracefully handled. Here an example of the change applied to kvm to register the mmu notifiers. Usually when a driver startups other allocations are required anyway and -ENOMEM failure paths exists already. struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); + int err; if (!kvm) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops; + err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm); + if (err) { + kfree(kvm); + return ERR_PTR(err); + } + return kvm; } mmu_notifier_unregister returns void and it's reliable. The patch also adds a few needed but missing includes that would prevent kernel to compile after these changes on non-x86 archs (x86 didn't need them by luck). [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix mm/filemap_xip.c build] [akpm@linux-foundation.org: fix mm/mmu_notifier.c build] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Kanoj Sarcar <kanojsarcar@yahoo.com> Cc: Roland Dreier <rdreier@cisco.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Chris Wright <chrisw@redhat.com> Cc: Marcelo Tosatti <marcelo@kvack.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Izik Eidus <izike@qumranet.com> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-28 22:46:29 +00:00
mmu_notifier_invalidate_range_end(mm, start, end);
return err;
}
EXPORT_SYMBOL_GPL(apply_to_page_range);
/*
* handle_pte_fault chooses page fault handler according to an entry
* which was read non-atomically. Before making any commitment, on
* those architectures or configurations (e.g. i386 with PAE) which
* might give a mix of unmatched parts, do_swap_page and do_file_page
* must check under lock before unmapping the pte and proceeding
* (but do_wp_page is only called after already making such a check;
* and do_anonymous_page and do_no_page can safely check later on).
*/
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 01:16:40 +00:00
static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
pte_t *page_table, pte_t orig_pte)
{
int same = 1;
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
if (sizeof(pte_t) > sizeof(unsigned long)) {
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 01:16:40 +00:00
spinlock_t *ptl = pte_lockptr(mm, pmd);
spin_lock(ptl);
same = pte_same(*page_table, orig_pte);
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 01:16:40 +00:00
spin_unlock(ptl);
}
#endif
pte_unmap(page_table);
return same;
}
/*
* Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
* servicing faults for write access. In the normal case, do always want
* pte_mkwrite. But get_user_pages can cause write faults for mappings
* that do not have writing enabled, when used by access_process_vm.
*/
static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
{
if (likely(vma->vm_flags & VM_WRITE))
pte = pte_mkwrite(pte);
return pte;
}
static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
{
/*
* If the source page was a PFN mapping, we don't have
* a "struct page" for it. We do a best-effort copy by
* just copying from the original user address. If that
* fails, we just zero-fill it. Live with it.
*/
if (unlikely(!src)) {
void *kaddr = kmap_atomic(dst, KM_USER0);
void __user *uaddr = (void __user *)(va & PAGE_MASK);
/*
* This really shouldn't fail, because the page is there
* in the page tables. But it might just be unreadable,
* in which case we just give up and fill the result with
* zeroes.
*/
if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
memset(kaddr, 0, PAGE_SIZE);
kunmap_atomic(kaddr, KM_USER0);
flush_dcache_page(dst);
mm: fix PageUptodate data race After running SetPageUptodate, preceeding stores to the page contents to actually bring it uptodate may not be ordered with the store to set the page uptodate. Therefore, another CPU which checks PageUptodate is true, then reads the page contents can get stale data. Fix this by having an smp_wmb before SetPageUptodate, and smp_rmb after PageUptodate. Many places that test PageUptodate, do so with the page locked, and this would be enough to ensure memory ordering in those places if SetPageUptodate were only called while the page is locked. Unfortunately that is not always the case for some filesystems, but it could be an idea for the future. Also bring the handling of anonymous page uptodateness in line with that of file backed page management, by marking anon pages as uptodate when they _are_ uptodate, rather than when our implementation requires that they be marked as such. Doing allows us to get rid of the smp_wmb's in the page copying functions, which were especially added for anonymous pages for an analogous memory ordering problem. Both file and anonymous pages are handled with the same barriers. FAQ: Q. Why not do this in flush_dcache_page? A. Firstly, flush_dcache_page handles only one side (the smb side) of the ordering protocol; we'd still need smp_rmb somewhere. Secondly, hiding away memory barriers in a completely unrelated function is nasty; at least in the PageUptodate macros, they are located together with (half) the operations involved in the ordering. Thirdly, the smp_wmb is only required when first bringing the page uptodate, wheras flush_dcache_page should be called each time it is written to through the kernel mapping. It is logically the wrong place to put it. Q. Why does this increase my text size / reduce my performance / etc. A. Because it is adding the necessary instructions to eliminate the data-race. Q. Can it be improved? A. Yes, eg. if you were to create a rule that all SetPageUptodate operations run under the page lock, we could avoid the smp_rmb places where PageUptodate is queried under the page lock. Requires audit of all filesystems and at least some would need reworking. That's great you're interested, I'm eagerly awaiting your patches. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:29:34 +00:00
} else
copy_user_highpage(dst, src, va, vma);
}
/*
* This routine handles present pages, when users try to write
* to a shared page. It is done by copying the page to a new address
* and decrementing the shared-page counter for the old page.
*
* Note that this routine assumes that the protection checks have been
* done by the caller (the low-level page fault routine in most cases).
* Thus we can safely just mark it writable once we've done any necessary
* COW.
*
* We also mark the page dirty at this point even though the page will
* change only once the write actually happens. This avoids a few races,
* and potentially makes it more efficient.
*
* We enter with non-exclusive mmap_sem (to exclude vma changes,
* but allow concurrent faults), with pte both mapped and locked.
* We return with mmap_sem still held, but pte unmapped and unlocked.
*/
static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pte_t *page_table, pmd_t *pmd,
spinlock_t *ptl, pte_t orig_pte)
{
struct page *old_page, *new_page;
pte_t entry;
mm: fault feedback #2 This patch completes Linus's wish that the fault return codes be made into bit flags, which I agree makes everything nicer. This requires requires all handle_mm_fault callers to be modified (possibly the modifications should go further and do things like fault accounting in handle_mm_fault -- however that would be for another patch). [akpm@linux-foundation.org: fix alpha build] [akpm@linux-foundation.org: fix s390 build] [akpm@linux-foundation.org: fix sparc build] [akpm@linux-foundation.org: fix sparc64 build] [akpm@linux-foundation.org: fix ia64 build] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Bryan Wu <bryan.wu@analog.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Matthew Wilcox <willy@debian.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Still apparently needs some ARM and PPC loving - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:47:05 +00:00
int reuse = 0, ret = 0;
int page_mkwrite = 0;
[PATCH] mm: tracking shared dirty pages Tracking of dirty pages in shared writeable mmap()s. The idea is simple: write protect clean shared writeable pages, catch the write-fault, make writeable and set dirty. On page write-back clean all the PTE dirty bits and write protect them once again. The implementation is a tad harder, mainly because the default backing_dev_info capabilities were too loosely maintained. Hence it is not enough to test the backing_dev_info for cap_account_dirty. The current heuristic is as follows, a VMA is eligible when: - its shared writeable (vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED) - it is not a 'special' mapping (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) == 0 - the backing_dev_info is cap_account_dirty mapping_cap_account_dirty(vma->vm_file->f_mapping) - f_op->mmap() didn't change the default page protection Page from remap_pfn_range() are explicitly excluded because their COW semantics are already horrid enough (see vm_normal_page() in do_wp_page()) and because they don't have a backing store anyway. mprotect() is taught about the new behaviour as well. However it overrides the last condition. Cleaning the pages on write-back is done with page_mkclean() a new rmap call. It can be called on any page, but is currently only implemented for mapped pages, if the page is found the be of a VMA that accounts dirty pages it will also wrprotect the PTE. Finally, in fs/buffers.c:try_to_free_buffers(); remove clear_page_dirty() from under ->private_lock. This seems to be safe, since ->private_lock is used to serialize access to the buffers, not the page itself. This is needed because clear_page_dirty() will call into page_mkclean() and would thereby violate locking order. [dhowells@redhat.com: Provide a page_mkclean() implementation for NOMMU] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 06:30:57 +00:00
struct page *dirty_page = NULL;
old_page = vm_normal_page(vma, address, orig_pte);
mm: dirty page accounting vs VM_MIXEDMAP Dirty page accounting accurately measures the amound of dirty pages in writable shared mappings by mapping the pages RO (as indicated by vma_wants_writenotify). We then trap on first write and call set_page_dirty() on the page, after which we map the page RW and continue execution. When we launder dirty pages, we call clear_page_dirty_for_io() which clears both the dirty flag, and maps the page RO again before we start writeout so that the story can repeat itself. vma_wants_writenotify() excludes VM_PFNMAP on the basis that we cannot do the regular dirty page stuff on raw PFNs and the memory isn't going anywhere anyway. The recently introduced VM_MIXEDMAP mixes both !pfn_valid() and pfn_valid() pages in a single mapping. We can't do dirty page accounting on !pfn_valid() pages as stated above, and mapping them RO causes them to be COW'ed on write, which breaks VM_SHARED semantics. Excluding VM_MIXEDMAP in vma_wants_writenotify() would mean we don't do the regular dirty page accounting for the pfn_valid() pages, which would bring back all the head-aches from inaccurate dirty page accounting. So instead, we let the !pfn_valid() pages get mapped RO, but fix them up unconditionally in the fault path. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: "Jared Hulbert" <jaredeh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-04 16:59:24 +00:00
if (!old_page) {
/*
* VM_MIXEDMAP !pfn_valid() case
*
* We should not cow pages in a shared writeable mapping.
* Just mark the pages writable as we can't do any dirty
* accounting on raw pfn maps.
*/
if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
(VM_WRITE|VM_SHARED))
goto reuse;
goto gotten;
mm: dirty page accounting vs VM_MIXEDMAP Dirty page accounting accurately measures the amound of dirty pages in writable shared mappings by mapping the pages RO (as indicated by vma_wants_writenotify). We then trap on first write and call set_page_dirty() on the page, after which we map the page RW and continue execution. When we launder dirty pages, we call clear_page_dirty_for_io() which clears both the dirty flag, and maps the page RO again before we start writeout so that the story can repeat itself. vma_wants_writenotify() excludes VM_PFNMAP on the basis that we cannot do the regular dirty page stuff on raw PFNs and the memory isn't going anywhere anyway. The recently introduced VM_MIXEDMAP mixes both !pfn_valid() and pfn_valid() pages in a single mapping. We can't do dirty page accounting on !pfn_valid() pages as stated above, and mapping them RO causes them to be COW'ed on write, which breaks VM_SHARED semantics. Excluding VM_MIXEDMAP in vma_wants_writenotify() would mean we don't do the regular dirty page accounting for the pfn_valid() pages, which would bring back all the head-aches from inaccurate dirty page accounting. So instead, we let the !pfn_valid() pages get mapped RO, but fix them up unconditionally in the fault path. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: "Jared Hulbert" <jaredeh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-04 16:59:24 +00:00
}
[PATCH] mm: tracking shared dirty pages Tracking of dirty pages in shared writeable mmap()s. The idea is simple: write protect clean shared writeable pages, catch the write-fault, make writeable and set dirty. On page write-back clean all the PTE dirty bits and write protect them once again. The implementation is a tad harder, mainly because the default backing_dev_info capabilities were too loosely maintained. Hence it is not enough to test the backing_dev_info for cap_account_dirty. The current heuristic is as follows, a VMA is eligible when: - its shared writeable (vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED) - it is not a 'special' mapping (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) == 0 - the backing_dev_info is cap_account_dirty mapping_cap_account_dirty(vma->vm_file->f_mapping) - f_op->mmap() didn't change the default page protection Page from remap_pfn_range() are explicitly excluded because their COW semantics are already horrid enough (see vm_normal_page() in do_wp_page()) and because they don't have a backing store anyway. mprotect() is taught about the new behaviour as well. However it overrides the last condition. Cleaning the pages on write-back is done with page_mkclean() a new rmap call. It can be called on any page, but is currently only implemented for mapped pages, if the page is found the be of a VMA that accounts dirty pages it will also wrprotect the PTE. Finally, in fs/buffers.c:try_to_free_buffers(); remove clear_page_dirty() from under ->private_lock. This seems to be safe, since ->private_lock is used to serialize access to the buffers, not the page itself. This is needed because clear_page_dirty() will call into page_mkclean() and would thereby violate locking order. [dhowells@redhat.com: Provide a page_mkclean() implementation for NOMMU] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 06:30:57 +00:00
/*
* Take out anonymous pages first, anonymous shared vmas are
* not dirty accountable.
[PATCH] mm: tracking shared dirty pages Tracking of dirty pages in shared writeable mmap()s. The idea is simple: write protect clean shared writeable pages, catch the write-fault, make writeable and set dirty. On page write-back clean all the PTE dirty bits and write protect them once again. The implementation is a tad harder, mainly because the default backing_dev_info capabilities were too loosely maintained. Hence it is not enough to test the backing_dev_info for cap_account_dirty. The current heuristic is as follows, a VMA is eligible when: - its shared writeable (vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED) - it is not a 'special' mapping (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) == 0 - the backing_dev_info is cap_account_dirty mapping_cap_account_dirty(vma->vm_file->f_mapping) - f_op->mmap() didn't change the default page protection Page from remap_pfn_range() are explicitly excluded because their COW semantics are already horrid enough (see vm_normal_page() in do_wp_page()) and because they don't have a backing store anyway. mprotect() is taught about the new behaviour as well. However it overrides the last condition. Cleaning the pages on write-back is done with page_mkclean() a new rmap call. It can be called on any page, but is currently only implemented for mapped pages, if the page is found the be of a VMA that accounts dirty pages it will also wrprotect the PTE. Finally, in fs/buffers.c:try_to_free_buffers(); remove clear_page_dirty() from under ->private_lock. This seems to be safe, since ->private_lock is used to serialize access to the buffers, not the page itself. This is needed because clear_page_dirty() will call into page_mkclean() and would thereby violate locking order. [dhowells@redhat.com: Provide a page_mkclean() implementation for NOMMU] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 06:30:57 +00:00
*/
if (PageAnon(old_page) && !PageKsm(old_page)) {
if (!trylock_page(old_page)) {
page_cache_get(old_page);
pte_unmap_unlock(page_table, ptl);
lock_page(old_page);
page_table = pte_offset_map_lock(mm, pmd, address,
&ptl);
if (!pte_same(*page_table, orig_pte)) {
unlock_page(old_page);
page_cache_release(old_page);
goto unlock;
}
page_cache_release(old_page);
}
reuse = reuse_swap_page(old_page);
unlock_page(old_page);
} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
[PATCH] mm: tracking shared dirty pages Tracking of dirty pages in shared writeable mmap()s. The idea is simple: write protect clean shared writeable pages, catch the write-fault, make writeable and set dirty. On page write-back clean all the PTE dirty bits and write protect them once again. The implementation is a tad harder, mainly because the default backing_dev_info capabilities were too loosely maintained. Hence it is not enough to test the backing_dev_info for cap_account_dirty. The current heuristic is as follows, a VMA is eligible when: - its shared writeable (vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED) - it is not a 'special' mapping (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) == 0 - the backing_dev_info is cap_account_dirty mapping_cap_account_dirty(vma->vm_file->f_mapping) - f_op->mmap() didn't change the default page protection Page from remap_pfn_range() are explicitly excluded because their COW semantics are already horrid enough (see vm_normal_page() in do_wp_page()) and because they don't have a backing store anyway. mprotect() is taught about the new behaviour as well. However it overrides the last condition. Cleaning the pages on write-back is done with page_mkclean() a new rmap call. It can be called on any page, but is currently only implemented for mapped pages, if the page is found the be of a VMA that accounts dirty pages it will also wrprotect the PTE. Finally, in fs/buffers.c:try_to_free_buffers(); remove clear_page_dirty() from under ->private_lock. This seems to be safe, since ->private_lock is used to serialize access to the buffers, not the page itself. This is needed because clear_page_dirty() will call into page_mkclean() and would thereby violate locking order. [dhowells@redhat.com: Provide a page_mkclean() implementation for NOMMU] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 06:30:57 +00:00
(VM_WRITE|VM_SHARED))) {
/*
* Only catch write-faults on shared writable pages,
* read-only shared pages can get COWed by
* get_user_pages(.write=1, .force=1).
*/
[PATCH] add page_mkwrite() vm_operations method Add a new VMA operation to notify a filesystem or other driver about the MMU generating a fault because userspace attempted to write to a page mapped through a read-only PTE. This facility permits the filesystem or driver to: (*) Implement storage allocation/reservation on attempted write, and so to deal with problems such as ENOSPC more gracefully (perhaps by generating SIGBUS). (*) Delay making the page writable until the contents have been written to a backing cache. This is useful for NFS/AFS when using FS-Cache/CacheFS. It permits the filesystem to have some guarantee about the state of the cache. (*) Account and limit number of dirty pages. This is one piece of the puzzle needed to make shared writable mapping work safely in FUSE. Needed by cachefs (Or is it cachefiles? Or fscache? <head spins>). At least four other groups have stated an interest in it or a desire to use the functionality it provides: FUSE, OCFS2, NTFS and JFFS2. Also, things like EXT3 really ought to use it to deal with the case of shared-writable mmap encountering ENOSPC before we permit the page to be dirtied. From: Peter Zijlstra <a.p.zijlstra@chello.nl> get_user_pages(.write=1, .force=1) can generate COW hits on read-only shared mappings, this patch traps those as mkpage_write candidates and fails to handle them the old way. Signed-off-by: David Howells <dhowells@redhat.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Joel Becker <Joel.Becker@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:03:43 +00:00
if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
struct vm_fault vmf;
int tmp;
vmf.virtual_address = (void __user *)(address &
PAGE_MASK);
vmf.pgoff = old_page->index;
vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
vmf.page = old_page;
[PATCH] add page_mkwrite() vm_operations method Add a new VMA operation to notify a filesystem or other driver about the MMU generating a fault because userspace attempted to write to a page mapped through a read-only PTE. This facility permits the filesystem or driver to: (*) Implement storage allocation/reservation on attempted write, and so to deal with problems such as ENOSPC more gracefully (perhaps by generating SIGBUS). (*) Delay making the page writable until the contents have been written to a backing cache. This is useful for NFS/AFS when using FS-Cache/CacheFS. It permits the filesystem to have some guarantee about the state of the cache. (*) Account and limit number of dirty pages. This is one piece of the puzzle needed to make shared writable mapping work safely in FUSE. Needed by cachefs (Or is it cachefiles? Or fscache? <head spins>). At least four other groups have stated an interest in it or a desire to use the functionality it provides: FUSE, OCFS2, NTFS and JFFS2. Also, things like EXT3 really ought to use it to deal with the case of shared-writable mmap encountering ENOSPC before we permit the page to be dirtied. From: Peter Zijlstra <a.p.zijlstra@chello.nl> get_user_pages(.write=1, .force=1) can generate COW hits on read-only shared mappings, this patch traps those as mkpage_write candidates and fails to handle them the old way. Signed-off-by: David Howells <dhowells@redhat.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Joel Becker <Joel.Becker@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:03:43 +00:00
/*
* Notify the address space that the page is about to
* become writable so that it can prohibit this or wait
* for the page to get into an appropriate state.
*
* We do this without the lock held, so that it can
* sleep if it needs to.
*/
page_cache_get(old_page);
pte_unmap_unlock(page_table, ptl);
tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
if (unlikely(tmp &
(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
ret = tmp;
[PATCH] add page_mkwrite() vm_operations method Add a new VMA operation to notify a filesystem or other driver about the MMU generating a fault because userspace attempted to write to a page mapped through a read-only PTE. This facility permits the filesystem or driver to: (*) Implement storage allocation/reservation on attempted write, and so to deal with problems such as ENOSPC more gracefully (perhaps by generating SIGBUS). (*) Delay making the page writable until the contents have been written to a backing cache. This is useful for NFS/AFS when using FS-Cache/CacheFS. It permits the filesystem to have some guarantee about the state of the cache. (*) Account and limit number of dirty pages. This is one piece of the puzzle needed to make shared writable mapping work safely in FUSE. Needed by cachefs (Or is it cachefiles? Or fscache? <head spins>). At least four other groups have stated an interest in it or a desire to use the functionality it provides: FUSE, OCFS2, NTFS and JFFS2. Also, things like EXT3 really ought to use it to deal with the case of shared-writable mmap encountering ENOSPC before we permit the page to be dirtied. From: Peter Zijlstra <a.p.zijlstra@chello.nl> get_user_pages(.write=1, .force=1) can generate COW hits on read-only shared mappings, this patch traps those as mkpage_write candidates and fails to handle them the old way. Signed-off-by: David Howells <dhowells@redhat.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Joel Becker <Joel.Becker@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:03:43 +00:00
goto unwritable_page;
}
mm: close page_mkwrite races Change page_mkwrite to allow implementations to return with the page locked, and also change it's callers (in page fault paths) to hold the lock until the page is marked dirty. This allows the filesystem to have full control of page dirtying events coming from the VM. Rather than simply hold the page locked over the page_mkwrite call, we call page_mkwrite with the page unlocked and allow callers to return with it locked, so filesystems can avoid LOR conditions with page lock. The problem with the current scheme is this: a filesystem that wants to associate some metadata with a page as long as the page is dirty, will perform this manipulation in its ->page_mkwrite. It currently then must return with the page unlocked and may not hold any other locks (according to existing page_mkwrite convention). In this window, the VM could write out the page, clearing page-dirty. The filesystem has no good way to detect that a dirty pte is about to be attached, so it will happily write out the page, at which point, the filesystem may manipulate the metadata to reflect that the page is no longer dirty. It is not always possible to perform the required metadata manipulation in ->set_page_dirty, because that function cannot block or fail. The filesystem may need to allocate some data structure, for example. And the VM cannot mark the pte dirty before page_mkwrite, because page_mkwrite is allowed to fail, so we must not allow any window where the page could be written to if page_mkwrite does fail. This solution of holding the page locked over the 3 critical operations (page_mkwrite, setting the pte dirty, and finally setting the page dirty) closes out races nicely, preventing page cleaning for writeout being initiated in that window. This provides the filesystem with a strong synchronisation against the VM here. - Sage needs this race closed for ceph filesystem. - Trond for NFS (http://bugzilla.kernel.org/show_bug.cgi?id=12913). - I need it for fsblock. - I suspect other filesystems may need it too (eg. btrfs). - I have converted buffer.c to the new locking. Even simple block allocation under dirty pages might be susceptible to i_size changing under partial page at the end of file (we also have a buffer.c-side problem here, but it cannot be fixed properly without this patch). - Other filesystems (eg. NFS, maybe btrfs) will need to change their page_mkwrite functions themselves. [ This also moves page_mkwrite another step closer to fault, which should eventually allow page_mkwrite to be moved into ->fault, and thus avoiding a filesystem calldown and page lock/unlock cycle in __do_fault. ] [akpm@linux-foundation.org: fix derefs of NULL ->mapping] Cc: Sage Weil <sage@newdream.net> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-30 22:08:16 +00:00
if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
lock_page(old_page);
if (!old_page->mapping) {
ret = 0; /* retry the fault */
unlock_page(old_page);
goto unwritable_page;
}
} else
VM_BUG_ON(!PageLocked(old_page));
[PATCH] add page_mkwrite() vm_operations method Add a new VMA operation to notify a filesystem or other driver about the MMU generating a fault because userspace attempted to write to a page mapped through a read-only PTE. This facility permits the filesystem or driver to: (*) Implement storage allocation/reservation on attempted write, and so to deal with problems such as ENOSPC more gracefully (perhaps by generating SIGBUS). (*) Delay making the page writable until the contents have been written to a backing cache. This is useful for NFS/AFS when using FS-Cache/CacheFS. It permits the filesystem to have some guarantee about the state of the cache. (*) Account and limit number of dirty pages. This is one piece of the puzzle needed to make shared writable mapping work safely in FUSE. Needed by cachefs (Or is it cachefiles? Or fscache? <head spins>). At least four other groups have stated an interest in it or a desire to use the functionality it provides: FUSE, OCFS2, NTFS and JFFS2. Also, things like EXT3 really ought to use it to deal with the case of shared-writable mmap encountering ENOSPC before we permit the page to be dirtied. From: Peter Zijlstra <a.p.zijlstra@chello.nl> get_user_pages(.write=1, .force=1) can generate COW hits on read-only shared mappings, this patch traps those as mkpage_write candidates and fails to handle them the old way. Signed-off-by: David Howells <dhowells@redhat.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Joel Becker <Joel.Becker@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:03:43 +00:00
/*
* Since we dropped the lock we need to revalidate
* the PTE as someone else may have changed it. If
* they did, we just return, as we can count on the
* MMU to tell us if they didn't also make it writable.
*/
page_table = pte_offset_map_lock(mm, pmd, address,
&ptl);
mm: close page_mkwrite races Change page_mkwrite to allow implementations to return with the page locked, and also change it's callers (in page fault paths) to hold the lock until the page is marked dirty. This allows the filesystem to have full control of page dirtying events coming from the VM. Rather than simply hold the page locked over the page_mkwrite call, we call page_mkwrite with the page unlocked and allow callers to return with it locked, so filesystems can avoid LOR conditions with page lock. The problem with the current scheme is this: a filesystem that wants to associate some metadata with a page as long as the page is dirty, will perform this manipulation in its ->page_mkwrite. It currently then must return with the page unlocked and may not hold any other locks (according to existing page_mkwrite convention). In this window, the VM could write out the page, clearing page-dirty. The filesystem has no good way to detect that a dirty pte is about to be attached, so it will happily write out the page, at which point, the filesystem may manipulate the metadata to reflect that the page is no longer dirty. It is not always possible to perform the required metadata manipulation in ->set_page_dirty, because that function cannot block or fail. The filesystem may need to allocate some data structure, for example. And the VM cannot mark the pte dirty before page_mkwrite, because page_mkwrite is allowed to fail, so we must not allow any window where the page could be written to if page_mkwrite does fail. This solution of holding the page locked over the 3 critical operations (page_mkwrite, setting the pte dirty, and finally setting the page dirty) closes out races nicely, preventing page cleaning for writeout being initiated in that window. This provides the filesystem with a strong synchronisation against the VM here. - Sage needs this race closed for ceph filesystem. - Trond for NFS (http://bugzilla.kernel.org/show_bug.cgi?id=12913). - I need it for fsblock. - I suspect other filesystems may need it too (eg. btrfs). - I have converted buffer.c to the new locking. Even simple block allocation under dirty pages might be susceptible to i_size changing under partial page at the end of file (we also have a buffer.c-side problem here, but it cannot be fixed properly without this patch). - Other filesystems (eg. NFS, maybe btrfs) will need to change their page_mkwrite functions themselves. [ This also moves page_mkwrite another step closer to fault, which should eventually allow page_mkwrite to be moved into ->fault, and thus avoiding a filesystem calldown and page lock/unlock cycle in __do_fault. ] [akpm@linux-foundation.org: fix derefs of NULL ->mapping] Cc: Sage Weil <sage@newdream.net> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-30 22:08:16 +00:00
if (!pte_same(*page_table, orig_pte)) {
unlock_page(old_page);
page_cache_release(old_page);
[PATCH] add page_mkwrite() vm_operations method Add a new VMA operation to notify a filesystem or other driver about the MMU generating a fault because userspace attempted to write to a page mapped through a read-only PTE. This facility permits the filesystem or driver to: (*) Implement storage allocation/reservation on attempted write, and so to deal with problems such as ENOSPC more gracefully (perhaps by generating SIGBUS). (*) Delay making the page writable until the contents have been written to a backing cache. This is useful for NFS/AFS when using FS-Cache/CacheFS. It permits the filesystem to have some guarantee about the state of the cache. (*) Account and limit number of dirty pages. This is one piece of the puzzle needed to make shared writable mapping work safely in FUSE. Needed by cachefs (Or is it cachefiles? Or fscache? <head spins>). At least four other groups have stated an interest in it or a desire to use the functionality it provides: FUSE, OCFS2, NTFS and JFFS2. Also, things like EXT3 really ought to use it to deal with the case of shared-writable mmap encountering ENOSPC before we permit the page to be dirtied. From: Peter Zijlstra <a.p.zijlstra@chello.nl> get_user_pages(.write=1, .force=1) can generate COW hits on read-only shared mappings, this patch traps those as mkpage_write candidates and fails to handle them the old way. Signed-off-by: David Howells <dhowells@redhat.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Joel Becker <Joel.Becker@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:03:43 +00:00
goto unlock;
mm: close page_mkwrite races Change page_mkwrite to allow implementations to return with the page locked, and also change it's callers (in page fault paths) to hold the lock until the page is marked dirty. This allows the filesystem to have full control of page dirtying events coming from the VM. Rather than simply hold the page locked over the page_mkwrite call, we call page_mkwrite with the page unlocked and allow callers to return with it locked, so filesystems can avoid LOR conditions with page lock. The problem with the current scheme is this: a filesystem that wants to associate some metadata with a page as long as the page is dirty, will perform this manipulation in its ->page_mkwrite. It currently then must return with the page unlocked and may not hold any other locks (according to existing page_mkwrite convention). In this window, the VM could write out the page, clearing page-dirty. The filesystem has no good way to detect that a dirty pte is about to be attached, so it will happily write out the page, at which point, the filesystem may manipulate the metadata to reflect that the page is no longer dirty. It is not always possible to perform the required metadata manipulation in ->set_page_dirty, because that function cannot block or fail. The filesystem may need to allocate some data structure, for example. And the VM cannot mark the pte dirty before page_mkwrite, because page_mkwrite is allowed to fail, so we must not allow any window where the page could be written to if page_mkwrite does fail. This solution of holding the page locked over the 3 critical operations (page_mkwrite, setting the pte dirty, and finally setting the page dirty) closes out races nicely, preventing page cleaning for writeout being initiated in that window. This provides the filesystem with a strong synchronisation against the VM here. - Sage needs this race closed for ceph filesystem. - Trond for NFS (http://bugzilla.kernel.org/show_bug.cgi?id=12913). - I need it for fsblock. - I suspect other filesystems may need it too (eg. btrfs). - I have converted buffer.c to the new locking. Even simple block allocation under dirty pages might be susceptible to i_size changing under partial page at the end of file (we also have a buffer.c-side problem here, but it cannot be fixed properly without this patch). - Other filesystems (eg. NFS, maybe btrfs) will need to change their page_mkwrite functions themselves. [ This also moves page_mkwrite another step closer to fault, which should eventually allow page_mkwrite to be moved into ->fault, and thus avoiding a filesystem calldown and page lock/unlock cycle in __do_fault. ] [akpm@linux-foundation.org: fix derefs of NULL ->mapping] Cc: Sage Weil <sage@newdream.net> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-30 22:08:16 +00:00
}
page_mkwrite = 1;
}
[PATCH] mm: tracking shared dirty pages Tracking of dirty pages in shared writeable mmap()s. The idea is simple: write protect clean shared writeable pages, catch the write-fault, make writeable and set dirty. On page write-back clean all the PTE dirty bits and write protect them once again. The implementation is a tad harder, mainly because the default backing_dev_info capabilities were too loosely maintained. Hence it is not enough to test the backing_dev_info for cap_account_dirty. The current heuristic is as follows, a VMA is eligible when: - its shared writeable (vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED) - it is not a 'special' mapping (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) == 0 - the backing_dev_info is cap_account_dirty mapping_cap_account_dirty(vma->vm_file->f_mapping) - f_op->mmap() didn't change the default page protection Page from remap_pfn_range() are explicitly excluded because their COW semantics are already horrid enough (see vm_normal_page() in do_wp_page()) and because they don't have a backing store anyway. mprotect() is taught about the new behaviour as well. However it overrides the last condition. Cleaning the pages on write-back is done with page_mkclean() a new rmap call. It can be called on any page, but is currently only implemented for mapped pages, if the page is found the be of a VMA that accounts dirty pages it will also wrprotect the PTE. Finally, in fs/buffers.c:try_to_free_buffers(); remove clear_page_dirty() from under ->private_lock. This seems to be safe, since ->private_lock is used to serialize access to the buffers, not the page itself. This is needed because clear_page_dirty() will call into page_mkclean() and would thereby violate locking order. [dhowells@redhat.com: Provide a page_mkclean() implementation for NOMMU] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 06:30:57 +00:00
dirty_page = old_page;
get_page(dirty_page);
[PATCH] add page_mkwrite() vm_operations method Add a new VMA operation to notify a filesystem or other driver about the MMU generating a fault because userspace attempted to write to a page mapped through a read-only PTE. This facility permits the filesystem or driver to: (*) Implement storage allocation/reservation on attempted write, and so to deal with problems such as ENOSPC more gracefully (perhaps by generating SIGBUS). (*) Delay making the page writable until the contents have been written to a backing cache. This is useful for NFS/AFS when using FS-Cache/CacheFS. It permits the filesystem to have some guarantee about the state of the cache. (*) Account and limit number of dirty pages. This is one piece of the puzzle needed to make shared writable mapping work safely in FUSE. Needed by cachefs (Or is it cachefiles? Or fscache? <head spins>). At least four other groups have stated an interest in it or a desire to use the functionality it provides: FUSE, OCFS2, NTFS and JFFS2. Also, things like EXT3 really ought to use it to deal with the case of shared-writable mmap encountering ENOSPC before we permit the page to be dirtied. From: Peter Zijlstra <a.p.zijlstra@chello.nl> get_user_pages(.write=1, .force=1) can generate COW hits on read-only shared mappings, this patch traps those as mkpage_write candidates and fails to handle them the old way. Signed-off-by: David Howells <dhowells@redhat.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Joel Becker <Joel.Becker@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:03:43 +00:00
reuse = 1;
}
if (reuse) {
mm: dirty page accounting vs VM_MIXEDMAP Dirty page accounting accurately measures the amound of dirty pages in writable shared mappings by mapping the pages RO (as indicated by vma_wants_writenotify). We then trap on first write and call set_page_dirty() on the page, after which we map the page RW and continue execution. When we launder dirty pages, we call clear_page_dirty_for_io() which clears both the dirty flag, and maps the page RO again before we start writeout so that the story can repeat itself. vma_wants_writenotify() excludes VM_PFNMAP on the basis that we cannot do the regular dirty page stuff on raw PFNs and the memory isn't going anywhere anyway. The recently introduced VM_MIXEDMAP mixes both !pfn_valid() and pfn_valid() pages in a single mapping. We can't do dirty page accounting on !pfn_valid() pages as stated above, and mapping them RO causes them to be COW'ed on write, which breaks VM_SHARED semantics. Excluding VM_MIXEDMAP in vma_wants_writenotify() would mean we don't do the regular dirty page accounting for the pfn_valid() pages, which would bring back all the head-aches from inaccurate dirty page accounting. So instead, we let the !pfn_valid() pages get mapped RO, but fix them up unconditionally in the fault path. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: "Jared Hulbert" <jaredeh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-04 16:59:24 +00:00
reuse:
[PATCH] add page_mkwrite() vm_operations method Add a new VMA operation to notify a filesystem or other driver about the MMU generating a fault because userspace attempted to write to a page mapped through a read-only PTE. This facility permits the filesystem or driver to: (*) Implement storage allocation/reservation on attempted write, and so to deal with problems such as ENOSPC more gracefully (perhaps by generating SIGBUS). (*) Delay making the page writable until the contents have been written to a backing cache. This is useful for NFS/AFS when using FS-Cache/CacheFS. It permits the filesystem to have some guarantee about the state of the cache. (*) Account and limit number of dirty pages. This is one piece of the puzzle needed to make shared writable mapping work safely in FUSE. Needed by cachefs (Or is it cachefiles? Or fscache? <head spins>). At least four other groups have stated an interest in it or a desire to use the functionality it provides: FUSE, OCFS2, NTFS and JFFS2. Also, things like EXT3 really ought to use it to deal with the case of shared-writable mmap encountering ENOSPC before we permit the page to be dirtied. From: Peter Zijlstra <a.p.zijlstra@chello.nl> get_user_pages(.write=1, .force=1) can generate COW hits on read-only shared mappings, this patch traps those as mkpage_write candidates and fails to handle them the old way. Signed-off-by: David Howells <dhowells@redhat.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Joel Becker <Joel.Becker@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:03:43 +00:00
flush_cache_page(vma, address, pte_pfn(orig_pte));
entry = pte_mkyoung(orig_pte);
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
if (ptep_set_access_flags(vma, address, page_table, entry,1))
update_mmu_cache(vma, address, entry);
[PATCH] add page_mkwrite() vm_operations method Add a new VMA operation to notify a filesystem or other driver about the MMU generating a fault because userspace attempted to write to a page mapped through a read-only PTE. This facility permits the filesystem or driver to: (*) Implement storage allocation/reservation on attempted write, and so to deal with problems such as ENOSPC more gracefully (perhaps by generating SIGBUS). (*) Delay making the page writable until the contents have been written to a backing cache. This is useful for NFS/AFS when using FS-Cache/CacheFS. It permits the filesystem to have some guarantee about the state of the cache. (*) Account and limit number of dirty pages. This is one piece of the puzzle needed to make shared writable mapping work safely in FUSE. Needed by cachefs (Or is it cachefiles? Or fscache? <head spins>). At least four other groups have stated an interest in it or a desire to use the functionality it provides: FUSE, OCFS2, NTFS and JFFS2. Also, things like EXT3 really ought to use it to deal with the case of shared-writable mmap encountering ENOSPC before we permit the page to be dirtied. From: Peter Zijlstra <a.p.zijlstra@chello.nl> get_user_pages(.write=1, .force=1) can generate COW hits on read-only shared mappings, this patch traps those as mkpage_write candidates and fails to handle them the old way. Signed-off-by: David Howells <dhowells@redhat.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Joel Becker <Joel.Becker@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:03:43 +00:00
ret |= VM_FAULT_WRITE;
goto unlock;
}
/*
* Ok, we need to copy. Oh, well..
*/
2005-10-30 01:16:12 +00:00
page_cache_get(old_page);
gotten:
pte_unmap_unlock(page_table, ptl);
if (unlikely(anon_vma_prepare(vma)))
goto oom;
mm: reinstate ZERO_PAGE KAMEZAWA Hiroyuki has observed customers of earlier kernels taking advantage of the ZERO_PAGE: which we stopped do_anonymous_page() from using in 2.6.24. And there were a couple of regression reports on LKML. Following suggestions from Linus, reinstate do_anonymous_page() use of the ZERO_PAGE; but this time avoid dirtying its struct page cacheline with (map)count updates - let vm_normal_page() regard it as abnormal. Use it only on arches which __HAVE_ARCH_PTE_SPECIAL (x86, s390, sh32, most powerpc): that's not essential, but minimizes additional branches (keeping them in the unlikely pte_special case); and incidentally excludes mips (some models of which needed eight colours of ZERO_PAGE to avoid costly exceptions). Don't be fanatical about avoiding ZERO_PAGE updates: get_user_pages() callers won't want to make exceptions for it, so increment its count there. Changes to mlock and migration? happily seems not needed. In most places it's quicker to check pfn than struct page address: prepare a __read_mostly zero_pfn for that. Does get_dump_page() still need its ZERO_PAGE check? probably not, but keep it anyway. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Acked-by: Rik van Riel <riel@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:03:30 +00:00
if (is_zero_pfn(pte_pfn(orig_pte))) {
mm: reinstate ZERO_PAGE KAMEZAWA Hiroyuki has observed customers of earlier kernels taking advantage of the ZERO_PAGE: which we stopped do_anonymous_page() from using in 2.6.24. And there were a couple of regression reports on LKML. Following suggestions from Linus, reinstate do_anonymous_page() use of the ZERO_PAGE; but this time avoid dirtying its struct page cacheline with (map)count updates - let vm_normal_page() regard it as abnormal. Use it only on arches which __HAVE_ARCH_PTE_SPECIAL (x86, s390, sh32, most powerpc): that's not essential, but minimizes additional branches (keeping them in the unlikely pte_special case); and incidentally excludes mips (some models of which needed eight colours of ZERO_PAGE to avoid costly exceptions). Don't be fanatical about avoiding ZERO_PAGE updates: get_user_pages() callers won't want to make exceptions for it, so increment its count there. Changes to mlock and migration? happily seems not needed. In most places it's quicker to check pfn than struct page address: prepare a __read_mostly zero_pfn for that. Does get_dump_page() still need its ZERO_PAGE check? probably not, but keep it anyway. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Acked-by: Rik van Riel <riel@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:03:30 +00:00
new_page = alloc_zeroed_user_highpage_movable(vma, address);
if (!new_page)
goto oom;
} else {
new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
if (!new_page)
goto oom;
cow_user_page(new_page, old_page, address, vma);
}
__SetPageUptodate(new_page);
mlock: mlocked pages are unevictable Make sure that mlocked pages also live on the unevictable LRU, so kswapd will not scan them over and over again. This is achieved through various strategies: 1) add yet another page flag--PG_mlocked--to indicate that the page is locked for efficient testing in vmscan and, optionally, fault path. This allows early culling of unevictable pages, preventing them from getting to page_referenced()/try_to_unmap(). Also allows separate accounting of mlock'd pages, as Nick's original patch did. Note: Nick's original mlock patch used a PG_mlocked flag. I had removed this in favor of the PG_unevictable flag + an mlock_count [new page struct member]. I restored the PG_mlocked flag to eliminate the new count field. 2) add the mlock/unevictable infrastructure to mm/mlock.c, with internal APIs in mm/internal.h. This is a rework of Nick's original patch to these files, taking into account that mlocked pages are now kept on unevictable LRU list. 3) update vmscan.c:page_evictable() to check PageMlocked() and, if vma passed in, the vm_flags. Note that the vma will only be passed in for new pages in the fault path; and then only if the "cull unevictable pages in fault path" patch is included. 4) add try_to_unlock() to rmap.c to walk a page's rmap and ClearPageMlocked() if no other vmas have it mlocked. Reuses as much of try_to_unmap() as possible. This effectively replaces the use of one of the lru list links as an mlock count. If this mechanism let's pages in mlocked vmas leak through w/o PG_mlocked set [I don't know that it does], we should catch them later in try_to_unmap(). One hopes this will be rare, as it will be relatively expensive. Original mm/internal.h, mm/rmap.c and mm/mlock.c changes: Signed-off-by: Nick Piggin <npiggin@suse.de> splitlru: introduce __get_user_pages(): New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS. because current get_user_pages() can't grab PROT_NONE pages theresore it cause PROT_NONE pages can't munlock. [akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch] [akpm@linux-foundation.org: untangle patch interdependencies] [akpm@linux-foundation.org: fix things after out-of-order merging] [hugh@veritas.com: fix page-flags mess] [lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm'] [kosaki.motohiro@jp.fujitsu.com: build fix] [kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments] [kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 03:26:44 +00:00
/*
* Don't let another task, with possibly unlocked vma,
* keep the mlocked page.
*/
if ((vma->vm_flags & VM_LOCKED) && old_page) {
mlock: mlocked pages are unevictable Make sure that mlocked pages also live on the unevictable LRU, so kswapd will not scan them over and over again. This is achieved through various strategies: 1) add yet another page flag--PG_mlocked--to indicate that the page is locked for efficient testing in vmscan and, optionally, fault path. This allows early culling of unevictable pages, preventing them from getting to page_referenced()/try_to_unmap(). Also allows separate accounting of mlock'd pages, as Nick's original patch did. Note: Nick's original mlock patch used a PG_mlocked flag. I had removed this in favor of the PG_unevictable flag + an mlock_count [new page struct member]. I restored the PG_mlocked flag to eliminate the new count field. 2) add the mlock/unevictable infrastructure to mm/mlock.c, with internal APIs in mm/internal.h. This is a rework of Nick's original patch to these files, taking into account that mlocked pages are now kept on unevictable LRU list. 3) update vmscan.c:page_evictable() to check PageMlocked() and, if vma passed in, the vm_flags. Note that the vma will only be passed in for new pages in the fault path; and then only if the "cull unevictable pages in fault path" patch is included. 4) add try_to_unlock() to rmap.c to walk a page's rmap and ClearPageMlocked() if no other vmas have it mlocked. Reuses as much of try_to_unmap() as possible. This effectively replaces the use of one of the lru list links as an mlock count. If this mechanism let's pages in mlocked vmas leak through w/o PG_mlocked set [I don't know that it does], we should catch them later in try_to_unmap(). One hopes this will be rare, as it will be relatively expensive. Original mm/internal.h, mm/rmap.c and mm/mlock.c changes: Signed-off-by: Nick Piggin <npiggin@suse.de> splitlru: introduce __get_user_pages(): New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS. because current get_user_pages() can't grab PROT_NONE pages theresore it cause PROT_NONE pages can't munlock. [akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch] [akpm@linux-foundation.org: untangle patch interdependencies] [akpm@linux-foundation.org: fix things after out-of-order merging] [hugh@veritas.com: fix page-flags mess] [lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm'] [kosaki.motohiro@jp.fujitsu.com: build fix] [kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments] [kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 03:26:44 +00:00
lock_page(old_page); /* for LRU manipulation */
clear_page_mlock(old_page);
unlock_page(old_page);
}
if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
goto oom_free_new;
/*
* Re-check the pte - we dropped the lock
*/
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
if (likely(pte_same(*page_table, orig_pte))) {
if (old_page) {
if (!PageAnon(old_page)) {
dec_mm_counter(mm, file_rss);
inc_mm_counter(mm, anon_rss);
}
} else
inc_mm_counter(mm, anon_rss);
flush_cache_page(vma, address, pte_pfn(orig_pte));
entry = mk_pte(new_page, vma->vm_page_prot);
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
[PATCH] mm: fix a race condition under SMC + COW Failing context is a multi threaded process context and the failing sequence is as follows. One thread T0 doing self modifying code on page X on processor P0 and another thread T1 doing COW (breaking the COW setup as part of just happened fork() in another thread T2) on the same page X on processor P1. T0 doing SMC can endup modifying the new page Y (allocated by the T1 doing COW on P1) but because of different I/D TLB's, P0 ITLB will not see the new mapping till the flush TLB IPI from P1 is received. During this interval, if T0 executes the code created by SMC it can result in an app error (as ITLB still points to old page X and endup executing the content in page X rather than using the content in page Y). Fix this issue by first clearing the PTE and flushing it, before updating it with new entry. Hugh sayeth: I was a bit sceptical, in the habit of thinking that Self Modifying Code must look such issues itself: but I guess there's nothing it can do to avoid this one. Fair enough, what you're changing it to is pretty much what powerpc and s390 were already doing, and is a more robust way of proceeding, consistent with how ptes are set everywhere else. The ptep_clear_flush is a bit heavy-handed (it's anxious to return the pte that was atomically cleared), but we'd have to wander through lots of arches to get the right minimal behaviour. It'd also be nice to eliminate ptep_establish completely, now only used to define other macros/inlines: it always seemed obfuscation to me, what you've got there now is clearer. Let's put those cleanups on a TODO list. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Acked-by: "David S. Miller" <davem@davemloft.net> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 08:58:42 +00:00
/*
* Clear the pte entry and flush it first, before updating the
* pte with the new entry. This will avoid a race condition
* seen in the presence of one thread doing SMC and another
* thread doing COW.
*/
ksm: add mmu_notifier set_pte_at_notify() KSM is a linux driver that allows dynamicly sharing identical memory pages between one or more processes. Unlike tradtional page sharing that is made at the allocation of the memory, ksm do it dynamicly after the memory was created. Memory is periodically scanned; identical pages are identified and merged. The sharing is made in a transparent way to the processes that use it. Ksm is highly important for hypervisors (kvm), where in production enviorments there might be many copys of the same data data among the host memory. This kind of data can be: similar kernels, librarys, cache, and so on. Even that ksm was wrote for kvm, any userspace application that want to use it to share its data can try it. Ksm may be useful for any application that might have similar (page aligment) data strctures among the memory, ksm will find this data merge it to one copy, and even if it will be changed and thereforew copy on writed, ksm will merge it again as soon as it will be identical again. Another reason to consider using ksm is the fact that it might simplify alot the userspace code of application that want to use shared private data, instead that the application will mange shared area, ksm will do this for the application, and even write to this data will be allowed without any synchinization acts from the application. Ksm was designed to be a loadable module that doesn't change the VM code of linux. This patch: The set_pte_at_notify() macro allows setting a pte in the shadow page table directly, instead of flushing the shadow page table entry and then getting vmexit to set it. It uses a new change_pte() callback to do so. set_pte_at_notify() is an optimization for kvm, and other users of mmu_notifiers, for COW pages. It is useful for kvm when ksm is used, because it allows kvm not to have to receive vmexit and only then map the ksm page into the shadow page table, but instead map it directly at the same time as Linux maps the page into the host page table. Users of mmu_notifiers who don't implement new mmu_notifier_change_pte() callback will just receive the mmu_notifier_invalidate_page() callback. Signed-off-by: Izik Eidus <ieidus@redhat.com> Signed-off-by: Chris Wright <chrisw@redhat.com> Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Avi Kivity <avi@redhat.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:01:51 +00:00
ptep_clear_flush(vma, address, page_table);
page_add_new_anon_rmap(new_page, vma, address);
ksm: add mmu_notifier set_pte_at_notify() KSM is a linux driver that allows dynamicly sharing identical memory pages between one or more processes. Unlike tradtional page sharing that is made at the allocation of the memory, ksm do it dynamicly after the memory was created. Memory is periodically scanned; identical pages are identified and merged. The sharing is made in a transparent way to the processes that use it. Ksm is highly important for hypervisors (kvm), where in production enviorments there might be many copys of the same data data among the host memory. This kind of data can be: similar kernels, librarys, cache, and so on. Even that ksm was wrote for kvm, any userspace application that want to use it to share its data can try it. Ksm may be useful for any application that might have similar (page aligment) data strctures among the memory, ksm will find this data merge it to one copy, and even if it will be changed and thereforew copy on writed, ksm will merge it again as soon as it will be identical again. Another reason to consider using ksm is the fact that it might simplify alot the userspace code of application that want to use shared private data, instead that the application will mange shared area, ksm will do this for the application, and even write to this data will be allowed without any synchinization acts from the application. Ksm was designed to be a loadable module that doesn't change the VM code of linux. This patch: The set_pte_at_notify() macro allows setting a pte in the shadow page table directly, instead of flushing the shadow page table entry and then getting vmexit to set it. It uses a new change_pte() callback to do so. set_pte_at_notify() is an optimization for kvm, and other users of mmu_notifiers, for COW pages. It is useful for kvm when ksm is used, because it allows kvm not to have to receive vmexit and only then map the ksm page into the shadow page table, but instead map it directly at the same time as Linux maps the page into the host page table. Users of mmu_notifiers who don't implement new mmu_notifier_change_pte() callback will just receive the mmu_notifier_invalidate_page() callback. Signed-off-by: Izik Eidus <ieidus@redhat.com> Signed-off-by: Chris Wright <chrisw@redhat.com> Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Avi Kivity <avi@redhat.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:01:51 +00:00
/*
* We call the notify macro here because, when using secondary
* mmu page tables (such as kvm shadow page tables), we want the
* new page to be mapped directly into the secondary page table.
*/
set_pte_at_notify(mm, address, page_table, entry);
swap: cull unevictable pages in fault path In the fault paths that install new anonymous pages, check whether the page is evictable or not using lru_cache_add_active_or_unevictable(). If the page is evictable, just add it to the active lru list [via the pagevec cache], else add it to the unevictable list. This "proactive" culling in the fault path mimics the handling of mlocked pages in Nick Piggin's series to keep mlocked pages off the lru lists. Notes: 1) This patch is optional--e.g., if one is concerned about the additional test in the fault path. We can defer the moving of nonreclaimable pages until when vmscan [shrink_*_list()] encounters them. Vmscan will only need to handle such pages once, but if there are a lot of them it could impact system performance. 2) The 'vma' argument to page_evictable() is require to notice that we're faulting a page into an mlock()ed vma w/o having to scan the page's rmap in the fault path. Culling mlock()ed anon pages is currently the only reason for this patch. 3) We can't cull swap pages in read_swap_cache_async() because the vma argument doesn't necessarily correspond to the swap cache offset passed in by swapin_readahead(). This could [did!] result in mlocking pages in non-VM_LOCKED vmas if [when] we tried to cull in this path. 4) Move set_pte_at() to after where we add page to lru to keep it hidden from other tasks that might walk the page table. We already do it in this order in do_anonymous() page. And, these are COW'd anon pages. Is this safe? [riel@redhat.com: undo an overzealous code cleanup] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 03:26:52 +00:00
update_mmu_cache(vma, address, entry);
if (old_page) {
/*
* Only after switching the pte to the new page may
* we remove the mapcount here. Otherwise another
* process may come and find the rmap count decremented
* before the pte is switched to the new page, and
* "reuse" the old page writing into it while our pte
* here still points into it and can be read by other
* threads.
*
* The critical issue is to order this
* page_remove_rmap with the ptp_clear_flush above.
* Those stores are ordered by (if nothing else,)
* the barrier present in the atomic_add_negative
* in page_remove_rmap.
*
* Then the TLB flush in ptep_clear_flush ensures that
* no process can access the old page before the
* decremented mapcount is visible. And the old page
* cannot be reused until after the decremented
* mapcount is visible. So transitively, TLBs to
* old page will be flushed before it can be reused.
*/
page_remove_rmap(old_page);
}
/* Free the old page.. */
new_page = old_page;
ret |= VM_FAULT_WRITE;
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
} else
mem_cgroup_uncharge_page(new_page);
if (new_page)
page_cache_release(new_page);
if (old_page)
page_cache_release(old_page);
unlock:
pte_unmap_unlock(page_table, ptl);
[PATCH] mm: tracking shared dirty pages Tracking of dirty pages in shared writeable mmap()s. The idea is simple: write protect clean shared writeable pages, catch the write-fault, make writeable and set dirty. On page write-back clean all the PTE dirty bits and write protect them once again. The implementation is a tad harder, mainly because the default backing_dev_info capabilities were too loosely maintained. Hence it is not enough to test the backing_dev_info for cap_account_dirty. The current heuristic is as follows, a VMA is eligible when: - its shared writeable (vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED) - it is not a 'special' mapping (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) == 0 - the backing_dev_info is cap_account_dirty mapping_cap_account_dirty(vma->vm_file->f_mapping) - f_op->mmap() didn't change the default page protection Page from remap_pfn_range() are explicitly excluded because their COW semantics are already horrid enough (see vm_normal_page() in do_wp_page()) and because they don't have a backing store anyway. mprotect() is taught about the new behaviour as well. However it overrides the last condition. Cleaning the pages on write-back is done with page_mkclean() a new rmap call. It can be called on any page, but is currently only implemented for mapped pages, if the page is found the be of a VMA that accounts dirty pages it will also wrprotect the PTE. Finally, in fs/buffers.c:try_to_free_buffers(); remove clear_page_dirty() from under ->private_lock. This seems to be safe, since ->private_lock is used to serialize access to the buffers, not the page itself. This is needed because clear_page_dirty() will call into page_mkclean() and would thereby violate locking order. [dhowells@redhat.com: Provide a page_mkclean() implementation for NOMMU] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 06:30:57 +00:00
if (dirty_page) {
/*
* Yes, Virginia, this is actually required to prevent a race
* with clear_page_dirty_for_io() from clearing the page dirty
* bit after it clear all dirty ptes, but before a racing
* do_wp_page installs a dirty pte.
*
* do_no_page is protected similarly.
*/
mm: close page_mkwrite races Change page_mkwrite to allow implementations to return with the page locked, and also change it's callers (in page fault paths) to hold the lock until the page is marked dirty. This allows the filesystem to have full control of page dirtying events coming from the VM. Rather than simply hold the page locked over the page_mkwrite call, we call page_mkwrite with the page unlocked and allow callers to return with it locked, so filesystems can avoid LOR conditions with page lock. The problem with the current scheme is this: a filesystem that wants to associate some metadata with a page as long as the page is dirty, will perform this manipulation in its ->page_mkwrite. It currently then must return with the page unlocked and may not hold any other locks (according to existing page_mkwrite convention). In this window, the VM could write out the page, clearing page-dirty. The filesystem has no good way to detect that a dirty pte is about to be attached, so it will happily write out the page, at which point, the filesystem may manipulate the metadata to reflect that the page is no longer dirty. It is not always possible to perform the required metadata manipulation in ->set_page_dirty, because that function cannot block or fail. The filesystem may need to allocate some data structure, for example. And the VM cannot mark the pte dirty before page_mkwrite, because page_mkwrite is allowed to fail, so we must not allow any window where the page could be written to if page_mkwrite does fail. This solution of holding the page locked over the 3 critical operations (page_mkwrite, setting the pte dirty, and finally setting the page dirty) closes out races nicely, preventing page cleaning for writeout being initiated in that window. This provides the filesystem with a strong synchronisation against the VM here. - Sage needs this race closed for ceph filesystem. - Trond for NFS (http://bugzilla.kernel.org/show_bug.cgi?id=12913). - I need it for fsblock. - I suspect other filesystems may need it too (eg. btrfs). - I have converted buffer.c to the new locking. Even simple block allocation under dirty pages might be susceptible to i_size changing under partial page at the end of file (we also have a buffer.c-side problem here, but it cannot be fixed properly without this patch). - Other filesystems (eg. NFS, maybe btrfs) will need to change their page_mkwrite functions themselves. [ This also moves page_mkwrite another step closer to fault, which should eventually allow page_mkwrite to be moved into ->fault, and thus avoiding a filesystem calldown and page lock/unlock cycle in __do_fault. ] [akpm@linux-foundation.org: fix derefs of NULL ->mapping] Cc: Sage Weil <sage@newdream.net> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-30 22:08:16 +00:00
if (!page_mkwrite) {
wait_on_page_locked(dirty_page);
set_page_dirty_balance(dirty_page, page_mkwrite);
}
[PATCH] mm: tracking shared dirty pages Tracking of dirty pages in shared writeable mmap()s. The idea is simple: write protect clean shared writeable pages, catch the write-fault, make writeable and set dirty. On page write-back clean all the PTE dirty bits and write protect them once again. The implementation is a tad harder, mainly because the default backing_dev_info capabilities were too loosely maintained. Hence it is not enough to test the backing_dev_info for cap_account_dirty. The current heuristic is as follows, a VMA is eligible when: - its shared writeable (vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED) - it is not a 'special' mapping (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) == 0 - the backing_dev_info is cap_account_dirty mapping_cap_account_dirty(vma->vm_file->f_mapping) - f_op->mmap() didn't change the default page protection Page from remap_pfn_range() are explicitly excluded because their COW semantics are already horrid enough (see vm_normal_page() in do_wp_page()) and because they don't have a backing store anyway. mprotect() is taught about the new behaviour as well. However it overrides the last condition. Cleaning the pages on write-back is done with page_mkclean() a new rmap call. It can be called on any page, but is currently only implemented for mapped pages, if the page is found the be of a VMA that accounts dirty pages it will also wrprotect the PTE. Finally, in fs/buffers.c:try_to_free_buffers(); remove clear_page_dirty() from under ->private_lock. This seems to be safe, since ->private_lock is used to serialize access to the buffers, not the page itself. This is needed because clear_page_dirty() will call into page_mkclean() and would thereby violate locking order. [dhowells@redhat.com: Provide a page_mkclean() implementation for NOMMU] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 06:30:57 +00:00
put_page(dirty_page);
mm: close page_mkwrite races Change page_mkwrite to allow implementations to return with the page locked, and also change it's callers (in page fault paths) to hold the lock until the page is marked dirty. This allows the filesystem to have full control of page dirtying events coming from the VM. Rather than simply hold the page locked over the page_mkwrite call, we call page_mkwrite with the page unlocked and allow callers to return with it locked, so filesystems can avoid LOR conditions with page lock. The problem with the current scheme is this: a filesystem that wants to associate some metadata with a page as long as the page is dirty, will perform this manipulation in its ->page_mkwrite. It currently then must return with the page unlocked and may not hold any other locks (according to existing page_mkwrite convention). In this window, the VM could write out the page, clearing page-dirty. The filesystem has no good way to detect that a dirty pte is about to be attached, so it will happily write out the page, at which point, the filesystem may manipulate the metadata to reflect that the page is no longer dirty. It is not always possible to perform the required metadata manipulation in ->set_page_dirty, because that function cannot block or fail. The filesystem may need to allocate some data structure, for example. And the VM cannot mark the pte dirty before page_mkwrite, because page_mkwrite is allowed to fail, so we must not allow any window where the page could be written to if page_mkwrite does fail. This solution of holding the page locked over the 3 critical operations (page_mkwrite, setting the pte dirty, and finally setting the page dirty) closes out races nicely, preventing page cleaning for writeout being initiated in that window. This provides the filesystem with a strong synchronisation against the VM here. - Sage needs this race closed for ceph filesystem. - Trond for NFS (http://bugzilla.kernel.org/show_bug.cgi?id=12913). - I need it for fsblock. - I suspect other filesystems may need it too (eg. btrfs). - I have converted buffer.c to the new locking. Even simple block allocation under dirty pages might be susceptible to i_size changing under partial page at the end of file (we also have a buffer.c-side problem here, but it cannot be fixed properly without this patch). - Other filesystems (eg. NFS, maybe btrfs) will need to change their page_mkwrite functions themselves. [ This also moves page_mkwrite another step closer to fault, which should eventually allow page_mkwrite to be moved into ->fault, and thus avoiding a filesystem calldown and page lock/unlock cycle in __do_fault. ] [akpm@linux-foundation.org: fix derefs of NULL ->mapping] Cc: Sage Weil <sage@newdream.net> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-30 22:08:16 +00:00
if (page_mkwrite) {
struct address_space *mapping = dirty_page->mapping;
set_page_dirty(dirty_page);
unlock_page(dirty_page);
page_cache_release(dirty_page);
if (mapping) {
/*
* Some device drivers do not set page.mapping
* but still dirty their pages
*/
balance_dirty_pages_ratelimited(mapping);
}
}
/* file_update_time outside page_lock */
if (vma->vm_file)
file_update_time(vma->vm_file);
[PATCH] mm: tracking shared dirty pages Tracking of dirty pages in shared writeable mmap()s. The idea is simple: write protect clean shared writeable pages, catch the write-fault, make writeable and set dirty. On page write-back clean all the PTE dirty bits and write protect them once again. The implementation is a tad harder, mainly because the default backing_dev_info capabilities were too loosely maintained. Hence it is not enough to test the backing_dev_info for cap_account_dirty. The current heuristic is as follows, a VMA is eligible when: - its shared writeable (vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED) - it is not a 'special' mapping (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) == 0 - the backing_dev_info is cap_account_dirty mapping_cap_account_dirty(vma->vm_file->f_mapping) - f_op->mmap() didn't change the default page protection Page from remap_pfn_range() are explicitly excluded because their COW semantics are already horrid enough (see vm_normal_page() in do_wp_page()) and because they don't have a backing store anyway. mprotect() is taught about the new behaviour as well. However it overrides the last condition. Cleaning the pages on write-back is done with page_mkclean() a new rmap call. It can be called on any page, but is currently only implemented for mapped pages, if the page is found the be of a VMA that accounts dirty pages it will also wrprotect the PTE. Finally, in fs/buffers.c:try_to_free_buffers(); remove clear_page_dirty() from under ->private_lock. This seems to be safe, since ->private_lock is used to serialize access to the buffers, not the page itself. This is needed because clear_page_dirty() will call into page_mkclean() and would thereby violate locking order. [dhowells@redhat.com: Provide a page_mkclean() implementation for NOMMU] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 06:30:57 +00:00
}
return ret;
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
oom_free_new:
page_cache_release(new_page);
oom:
mm: close page_mkwrite races Change page_mkwrite to allow implementations to return with the page locked, and also change it's callers (in page fault paths) to hold the lock until the page is marked dirty. This allows the filesystem to have full control of page dirtying events coming from the VM. Rather than simply hold the page locked over the page_mkwrite call, we call page_mkwrite with the page unlocked and allow callers to return with it locked, so filesystems can avoid LOR conditions with page lock. The problem with the current scheme is this: a filesystem that wants to associate some metadata with a page as long as the page is dirty, will perform this manipulation in its ->page_mkwrite. It currently then must return with the page unlocked and may not hold any other locks (according to existing page_mkwrite convention). In this window, the VM could write out the page, clearing page-dirty. The filesystem has no good way to detect that a dirty pte is about to be attached, so it will happily write out the page, at which point, the filesystem may manipulate the metadata to reflect that the page is no longer dirty. It is not always possible to perform the required metadata manipulation in ->set_page_dirty, because that function cannot block or fail. The filesystem may need to allocate some data structure, for example. And the VM cannot mark the pte dirty before page_mkwrite, because page_mkwrite is allowed to fail, so we must not allow any window where the page could be written to if page_mkwrite does fail. This solution of holding the page locked over the 3 critical operations (page_mkwrite, setting the pte dirty, and finally setting the page dirty) closes out races nicely, preventing page cleaning for writeout being initiated in that window. This provides the filesystem with a strong synchronisation against the VM here. - Sage needs this race closed for ceph filesystem. - Trond for NFS (http://bugzilla.kernel.org/show_bug.cgi?id=12913). - I need it for fsblock. - I suspect other filesystems may need it too (eg. btrfs). - I have converted buffer.c to the new locking. Even simple block allocation under dirty pages might be susceptible to i_size changing under partial page at the end of file (we also have a buffer.c-side problem here, but it cannot be fixed properly without this patch). - Other filesystems (eg. NFS, maybe btrfs) will need to change their page_mkwrite functions themselves. [ This also moves page_mkwrite another step closer to fault, which should eventually allow page_mkwrite to be moved into ->fault, and thus avoiding a filesystem calldown and page lock/unlock cycle in __do_fault. ] [akpm@linux-foundation.org: fix derefs of NULL ->mapping] Cc: Sage Weil <sage@newdream.net> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-30 22:08:16 +00:00
if (old_page) {
if (page_mkwrite) {
unlock_page(old_page);
page_cache_release(old_page);
}
page_cache_release(old_page);
mm: close page_mkwrite races Change page_mkwrite to allow implementations to return with the page locked, and also change it's callers (in page fault paths) to hold the lock until the page is marked dirty. This allows the filesystem to have full control of page dirtying events coming from the VM. Rather than simply hold the page locked over the page_mkwrite call, we call page_mkwrite with the page unlocked and allow callers to return with it locked, so filesystems can avoid LOR conditions with page lock. The problem with the current scheme is this: a filesystem that wants to associate some metadata with a page as long as the page is dirty, will perform this manipulation in its ->page_mkwrite. It currently then must return with the page unlocked and may not hold any other locks (according to existing page_mkwrite convention). In this window, the VM could write out the page, clearing page-dirty. The filesystem has no good way to detect that a dirty pte is about to be attached, so it will happily write out the page, at which point, the filesystem may manipulate the metadata to reflect that the page is no longer dirty. It is not always possible to perform the required metadata manipulation in ->set_page_dirty, because that function cannot block or fail. The filesystem may need to allocate some data structure, for example. And the VM cannot mark the pte dirty before page_mkwrite, because page_mkwrite is allowed to fail, so we must not allow any window where the page could be written to if page_mkwrite does fail. This solution of holding the page locked over the 3 critical operations (page_mkwrite, setting the pte dirty, and finally setting the page dirty) closes out races nicely, preventing page cleaning for writeout being initiated in that window. This provides the filesystem with a strong synchronisation against the VM here. - Sage needs this race closed for ceph filesystem. - Trond for NFS (http://bugzilla.kernel.org/show_bug.cgi?id=12913). - I need it for fsblock. - I suspect other filesystems may need it too (eg. btrfs). - I have converted buffer.c to the new locking. Even simple block allocation under dirty pages might be susceptible to i_size changing under partial page at the end of file (we also have a buffer.c-side problem here, but it cannot be fixed properly without this patch). - Other filesystems (eg. NFS, maybe btrfs) will need to change their page_mkwrite functions themselves. [ This also moves page_mkwrite another step closer to fault, which should eventually allow page_mkwrite to be moved into ->fault, and thus avoiding a filesystem calldown and page lock/unlock cycle in __do_fault. ] [akpm@linux-foundation.org: fix derefs of NULL ->mapping] Cc: Sage Weil <sage@newdream.net> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-30 22:08:16 +00:00
}
return VM_FAULT_OOM;
[PATCH] add page_mkwrite() vm_operations method Add a new VMA operation to notify a filesystem or other driver about the MMU generating a fault because userspace attempted to write to a page mapped through a read-only PTE. This facility permits the filesystem or driver to: (*) Implement storage allocation/reservation on attempted write, and so to deal with problems such as ENOSPC more gracefully (perhaps by generating SIGBUS). (*) Delay making the page writable until the contents have been written to a backing cache. This is useful for NFS/AFS when using FS-Cache/CacheFS. It permits the filesystem to have some guarantee about the state of the cache. (*) Account and limit number of dirty pages. This is one piece of the puzzle needed to make shared writable mapping work safely in FUSE. Needed by cachefs (Or is it cachefiles? Or fscache? <head spins>). At least four other groups have stated an interest in it or a desire to use the functionality it provides: FUSE, OCFS2, NTFS and JFFS2. Also, things like EXT3 really ought to use it to deal with the case of shared-writable mmap encountering ENOSPC before we permit the page to be dirtied. From: Peter Zijlstra <a.p.zijlstra@chello.nl> get_user_pages(.write=1, .force=1) can generate COW hits on read-only shared mappings, this patch traps those as mkpage_write candidates and fails to handle them the old way. Signed-off-by: David Howells <dhowells@redhat.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Joel Becker <Joel.Becker@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:03:43 +00:00
unwritable_page:
page_cache_release(old_page);
return ret;
}
/*
* Helper functions for unmap_mapping_range().
*
* __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
*
* We have to restart searching the prio_tree whenever we drop the lock,
* since the iterator is only valid while the lock is held, and anyway
* a later vma might be split and reinserted earlier while lock dropped.
*
* The list of nonlinear vmas could be handled more efficiently, using
* a placeholder, but handle it in the same way until a need is shown.
* It is important to search the prio_tree before nonlinear list: a vma
* may become nonlinear and be shifted from prio_tree to nonlinear list
* while the lock is dropped; but never shifted from list to prio_tree.
*
* In order to make forward progress despite restarting the search,
* vm_truncate_count is used to mark a vma as now dealt with, so we can
* quickly skip it next time around. Since the prio_tree search only
* shows us those vmas affected by unmapping the range in question, we
* can't efficiently keep all vmas in step with mapping->truncate_count:
* so instead reset them all whenever it wraps back to 0 (then go to 1).
* mapping->truncate_count and vma->vm_truncate_count are protected by
* i_mmap_lock.
*
* In order to make forward progress despite repeatedly restarting some
* large vma, note the restart_addr from unmap_vmas when it breaks out:
* and restart from that address when we reach that vma again. It might
* have been split or merged, shrunk or extended, but never shifted: so
* restart_addr remains valid so long as it remains in the vma's range.
* unmap_mapping_range forces truncate_count to leap over page-aligned
* values so we can save vma's restart_addr in its truncate_count field.
*/
#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
static void reset_vma_truncate_counts(struct address_space *mapping)
{
struct vm_area_struct *vma;
struct prio_tree_iter iter;
vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
vma->vm_truncate_count = 0;
list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
vma->vm_truncate_count = 0;
}
static int unmap_mapping_range_vma(struct vm_area_struct *vma,
unsigned long start_addr, unsigned long end_addr,
struct zap_details *details)
{
unsigned long restart_addr;
int need_break;
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:57 +00:00
/*
* files that support invalidating or truncating portions of the
* file from under mmaped areas must have their ->fault function
mm: fault feedback #2 This patch completes Linus's wish that the fault return codes be made into bit flags, which I agree makes everything nicer. This requires requires all handle_mm_fault callers to be modified (possibly the modifications should go further and do things like fault accounting in handle_mm_fault -- however that would be for another patch). [akpm@linux-foundation.org: fix alpha build] [akpm@linux-foundation.org: fix s390 build] [akpm@linux-foundation.org: fix sparc build] [akpm@linux-foundation.org: fix sparc64 build] [akpm@linux-foundation.org: fix ia64 build] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Bryan Wu <bryan.wu@analog.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Matthew Wilcox <willy@debian.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Still apparently needs some ARM and PPC loving - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:47:05 +00:00
* return a locked page (and set VM_FAULT_LOCKED in the return).
* This provides synchronisation against concurrent unmapping here.
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:57 +00:00
*/
again:
restart_addr = vma->vm_truncate_count;
if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
start_addr = restart_addr;
if (start_addr >= end_addr) {
/* Top of vma has been split off since last time */
vma->vm_truncate_count = details->truncate_count;
return 0;
}
}
restart_addr = zap_page_range(vma, start_addr,
end_addr - start_addr, details);
need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
if (restart_addr >= end_addr) {
/* We have now completed this vma: mark it so */
vma->vm_truncate_count = details->truncate_count;
if (!need_break)
return 0;
} else {
/* Note restart_addr in vma's truncate_count field */
vma->vm_truncate_count = restart_addr;
if (!need_break)
goto again;
}
spin_unlock(details->i_mmap_lock);
cond_resched();
spin_lock(details->i_mmap_lock);
return -EINTR;
}
static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
struct zap_details *details)
{
struct vm_area_struct *vma;
struct prio_tree_iter iter;
pgoff_t vba, vea, zba, zea;
restart:
vma_prio_tree_foreach(vma, &iter, root,
details->first_index, details->last_index) {
/* Skip quickly over those we have already dealt with */
if (vma->vm_truncate_count == details->truncate_count)
continue;
vba = vma->vm_pgoff;
vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
zba = details->first_index;
if (zba < vba)
zba = vba;
zea = details->last_index;
if (zea > vea)
zea = vea;
if (unmap_mapping_range_vma(vma,
((zba - vba) << PAGE_SHIFT) + vma->vm_start,
((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
details) < 0)
goto restart;
}
}
static inline void unmap_mapping_range_list(struct list_head *head,
struct zap_details *details)
{
struct vm_area_struct *vma;
/*
* In nonlinear VMAs there is no correspondence between virtual address
* offset and file offset. So we must perform an exhaustive search
* across *all* the pages in each nonlinear VMA, not just the pages
* whose virtual address lies outside the file truncation point.
*/
restart:
list_for_each_entry(vma, head, shared.vm_set.list) {
/* Skip quickly over those we have already dealt with */
if (vma->vm_truncate_count == details->truncate_count)
continue;
details->nonlinear_vma = vma;
if (unmap_mapping_range_vma(vma, vma->vm_start,
vma->vm_end, details) < 0)
goto restart;
}
}
/**
* unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
* @mapping: the address space containing mmaps to be unmapped.
* @holebegin: byte in first page to unmap, relative to the start of
* the underlying file. This will be rounded down to a PAGE_SIZE
* boundary. Note that this is different from vmtruncate(), which
* must keep the partial page. In contrast, we must get rid of
* partial pages.
* @holelen: size of prospective hole in bytes. This will be rounded
* up to a PAGE_SIZE boundary. A holelen of zero truncates to the
* end of the file.
* @even_cows: 1 when truncating a file, unmap even private COWed pages;
* but 0 when invalidating pagecache, don't throw away private data.
*/
void unmap_mapping_range(struct address_space *mapping,
loff_t const holebegin, loff_t const holelen, int even_cows)
{
struct zap_details details;
pgoff_t hba = holebegin >> PAGE_SHIFT;
pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
/* Check for overflow. */
if (sizeof(holelen) > sizeof(hlen)) {
long long holeend =
(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (holeend & ~(long long)ULONG_MAX)
hlen = ULONG_MAX - hba + 1;
}
details.check_mapping = even_cows? NULL: mapping;
details.nonlinear_vma = NULL;
details.first_index = hba;
details.last_index = hba + hlen - 1;
if (details.last_index < details.first_index)
details.last_index = ULONG_MAX;
details.i_mmap_lock = &mapping->i_mmap_lock;
spin_lock(&mapping->i_mmap_lock);
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:57 +00:00
/* Protect against endless unmapping loops */
mapping->truncate_count++;
if (unlikely(is_restart_addr(mapping->truncate_count))) {
if (mapping->truncate_count == 0)
reset_vma_truncate_counts(mapping);
mapping->truncate_count++;
}
details.truncate_count = mapping->truncate_count;
if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
unmap_mapping_range_tree(&mapping->i_mmap, &details);
if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
spin_unlock(&mapping->i_mmap_lock);
}
EXPORT_SYMBOL(unmap_mapping_range);
/**
* vmtruncate - unmap mappings "freed" by truncate() syscall
* @inode: inode of the file used
* @offset: file offset to start truncating
*
* NOTE! We have to be ready to update the memory sharing
* between the file and the memory map for a potential last
* incomplete page. Ugly, but necessary.
*/
int vmtruncate(struct inode * inode, loff_t offset)
{
if (inode->i_size < offset) {
unsigned long limit;
limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
if (limit != RLIM_INFINITY && offset > limit)
goto out_sig;
if (offset > inode->i_sb->s_maxbytes)
goto out_big;
i_size_write(inode, offset);
} else {
struct address_space *mapping = inode->i_mapping;
/*
* truncation of in-use swapfiles is disallowed - it would
* cause subsequent swapout to scribble on the now-freed
* blocks.
*/
if (IS_SWAPFILE(inode))
return -ETXTBSY;
i_size_write(inode, offset);
/*
* unmap_mapping_range is called twice, first simply for
* efficiency so that truncate_inode_pages does fewer
* single-page unmaps. However after this first call, and
* before truncate_inode_pages finishes, it is possible for
* private pages to be COWed, which remain after
* truncate_inode_pages finishes, hence the second
* unmap_mapping_range call must be made for correctness.
*/
unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
truncate_inode_pages(mapping, offset);
unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
}
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:57 +00:00
if (inode->i_op->truncate)
inode->i_op->truncate(inode);
return 0;
out_sig:
send_sig(SIGXFSZ, current, 0);
out_big:
return -EFBIG;
}
EXPORT_SYMBOL(vmtruncate);
[PATCH] madvise(MADV_REMOVE): remove pages from tmpfs shm backing store Here is the patch to implement madvise(MADV_REMOVE) - which frees up a given range of pages & its associated backing store. Current implementation supports only shmfs/tmpfs and other filesystems return -ENOSYS. "Some app allocates large tmpfs files, then when some task quits and some client disconnect, some memory can be released. However the only way to release tmpfs-swap is to MADV_REMOVE". - Andrea Arcangeli Databases want to use this feature to drop a section of their bufferpool (shared memory segments) - without writing back to disk/swap space. This feature is also useful for supporting hot-plug memory on UML. Concerns raised by Andrew Morton: - "We have no plan for holepunching! If we _do_ have such a plan (or might in the future) then what would the API look like? I think sys_holepunch(fd, start, len), so we should start out with that." - Using madvise is very weird, because people will ask "why do I need to mmap my file before I can stick a hole in it?" - None of the other madvise operations call into the filesystem in this manner. A broad question is: is this capability an MM operation or a filesytem operation? truncate, for example, is a filesystem operation which sometimes has MM side-effects. madvise is an mm operation and with this patch, it gains FS side-effects, only they're really, really significant ones." Comments: - Andrea suggested the fs operation too but then it's more efficient to have it as a mm operation with fs side effects, because they don't immediatly know fd and physical offset of the range. It's possible to fixup in userland and to use the fs operation but it's more expensive, the vmas are already in the kernel and we can use them. Short term plan & Future Direction: - We seem to need this interface only for shmfs/tmpfs files in the short term. We have to add hooks into the filesystem for correctness and completeness. This is what this patch does. - In the future, plan is to support both fs and mmap apis also. This also involves (other) filesystem specific functions to be implemented. - Current patch doesn't support VM_NONLINEAR - which can be addressed in the future. Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Andrea Arcangeli <andrea@suse.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Cc: Ulrich Drepper <drepper@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-06 08:10:38 +00:00
int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
{
struct address_space *mapping = inode->i_mapping;
/*
* If the underlying filesystem is not going to provide
* a way to truncate a range of blocks (punch a hole) -
* we should return failure right now.
*/
if (!inode->i_op->truncate_range)
[PATCH] madvise(MADV_REMOVE): remove pages from tmpfs shm backing store Here is the patch to implement madvise(MADV_REMOVE) - which frees up a given range of pages & its associated backing store. Current implementation supports only shmfs/tmpfs and other filesystems return -ENOSYS. "Some app allocates large tmpfs files, then when some task quits and some client disconnect, some memory can be released. However the only way to release tmpfs-swap is to MADV_REMOVE". - Andrea Arcangeli Databases want to use this feature to drop a section of their bufferpool (shared memory segments) - without writing back to disk/swap space. This feature is also useful for supporting hot-plug memory on UML. Concerns raised by Andrew Morton: - "We have no plan for holepunching! If we _do_ have such a plan (or might in the future) then what would the API look like? I think sys_holepunch(fd, start, len), so we should start out with that." - Using madvise is very weird, because people will ask "why do I need to mmap my file before I can stick a hole in it?" - None of the other madvise operations call into the filesystem in this manner. A broad question is: is this capability an MM operation or a filesytem operation? truncate, for example, is a filesystem operation which sometimes has MM side-effects. madvise is an mm operation and with this patch, it gains FS side-effects, only they're really, really significant ones." Comments: - Andrea suggested the fs operation too but then it's more efficient to have it as a mm operation with fs side effects, because they don't immediatly know fd and physical offset of the range. It's possible to fixup in userland and to use the fs operation but it's more expensive, the vmas are already in the kernel and we can use them. Short term plan & Future Direction: - We seem to need this interface only for shmfs/tmpfs files in the short term. We have to add hooks into the filesystem for correctness and completeness. This is what this patch does. - In the future, plan is to support both fs and mmap apis also. This also involves (other) filesystem specific functions to be implemented. - Current patch doesn't support VM_NONLINEAR - which can be addressed in the future. Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Andrea Arcangeli <andrea@suse.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Cc: Ulrich Drepper <drepper@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-06 08:10:38 +00:00
return -ENOSYS;
mutex_lock(&inode->i_mutex);
[PATCH] madvise(MADV_REMOVE): remove pages from tmpfs shm backing store Here is the patch to implement madvise(MADV_REMOVE) - which frees up a given range of pages & its associated backing store. Current implementation supports only shmfs/tmpfs and other filesystems return -ENOSYS. "Some app allocates large tmpfs files, then when some task quits and some client disconnect, some memory can be released. However the only way to release tmpfs-swap is to MADV_REMOVE". - Andrea Arcangeli Databases want to use this feature to drop a section of their bufferpool (shared memory segments) - without writing back to disk/swap space. This feature is also useful for supporting hot-plug memory on UML. Concerns raised by Andrew Morton: - "We have no plan for holepunching! If we _do_ have such a plan (or might in the future) then what would the API look like? I think sys_holepunch(fd, start, len), so we should start out with that." - Using madvise is very weird, because people will ask "why do I need to mmap my file before I can stick a hole in it?" - None of the other madvise operations call into the filesystem in this manner. A broad question is: is this capability an MM operation or a filesytem operation? truncate, for example, is a filesystem operation which sometimes has MM side-effects. madvise is an mm operation and with this patch, it gains FS side-effects, only they're really, really significant ones." Comments: - Andrea suggested the fs operation too but then it's more efficient to have it as a mm operation with fs side effects, because they don't immediatly know fd and physical offset of the range. It's possible to fixup in userland and to use the fs operation but it's more expensive, the vmas are already in the kernel and we can use them. Short term plan & Future Direction: - We seem to need this interface only for shmfs/tmpfs files in the short term. We have to add hooks into the filesystem for correctness and completeness. This is what this patch does. - In the future, plan is to support both fs and mmap apis also. This also involves (other) filesystem specific functions to be implemented. - Current patch doesn't support VM_NONLINEAR - which can be addressed in the future. Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Andrea Arcangeli <andrea@suse.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Cc: Ulrich Drepper <drepper@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-06 08:10:38 +00:00
down_write(&inode->i_alloc_sem);
unmap_mapping_range(mapping, offset, (end - offset), 1);
truncate_inode_pages_range(mapping, offset, end);
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:57 +00:00
unmap_mapping_range(mapping, offset, (end - offset), 1);
[PATCH] madvise(MADV_REMOVE): remove pages from tmpfs shm backing store Here is the patch to implement madvise(MADV_REMOVE) - which frees up a given range of pages & its associated backing store. Current implementation supports only shmfs/tmpfs and other filesystems return -ENOSYS. "Some app allocates large tmpfs files, then when some task quits and some client disconnect, some memory can be released. However the only way to release tmpfs-swap is to MADV_REMOVE". - Andrea Arcangeli Databases want to use this feature to drop a section of their bufferpool (shared memory segments) - without writing back to disk/swap space. This feature is also useful for supporting hot-plug memory on UML. Concerns raised by Andrew Morton: - "We have no plan for holepunching! If we _do_ have such a plan (or might in the future) then what would the API look like? I think sys_holepunch(fd, start, len), so we should start out with that." - Using madvise is very weird, because people will ask "why do I need to mmap my file before I can stick a hole in it?" - None of the other madvise operations call into the filesystem in this manner. A broad question is: is this capability an MM operation or a filesytem operation? truncate, for example, is a filesystem operation which sometimes has MM side-effects. madvise is an mm operation and with this patch, it gains FS side-effects, only they're really, really significant ones." Comments: - Andrea suggested the fs operation too but then it's more efficient to have it as a mm operation with fs side effects, because they don't immediatly know fd and physical offset of the range. It's possible to fixup in userland and to use the fs operation but it's more expensive, the vmas are already in the kernel and we can use them. Short term plan & Future Direction: - We seem to need this interface only for shmfs/tmpfs files in the short term. We have to add hooks into the filesystem for correctness and completeness. This is what this patch does. - In the future, plan is to support both fs and mmap apis also. This also involves (other) filesystem specific functions to be implemented. - Current patch doesn't support VM_NONLINEAR - which can be addressed in the future. Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Andrea Arcangeli <andrea@suse.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Cc: Ulrich Drepper <drepper@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-06 08:10:38 +00:00
inode->i_op->truncate_range(inode, offset, end);
up_write(&inode->i_alloc_sem);
mutex_unlock(&inode->i_mutex);
[PATCH] madvise(MADV_REMOVE): remove pages from tmpfs shm backing store Here is the patch to implement madvise(MADV_REMOVE) - which frees up a given range of pages & its associated backing store. Current implementation supports only shmfs/tmpfs and other filesystems return -ENOSYS. "Some app allocates large tmpfs files, then when some task quits and some client disconnect, some memory can be released. However the only way to release tmpfs-swap is to MADV_REMOVE". - Andrea Arcangeli Databases want to use this feature to drop a section of their bufferpool (shared memory segments) - without writing back to disk/swap space. This feature is also useful for supporting hot-plug memory on UML. Concerns raised by Andrew Morton: - "We have no plan for holepunching! If we _do_ have such a plan (or might in the future) then what would the API look like? I think sys_holepunch(fd, start, len), so we should start out with that." - Using madvise is very weird, because people will ask "why do I need to mmap my file before I can stick a hole in it?" - None of the other madvise operations call into the filesystem in this manner. A broad question is: is this capability an MM operation or a filesytem operation? truncate, for example, is a filesystem operation which sometimes has MM side-effects. madvise is an mm operation and with this patch, it gains FS side-effects, only they're really, really significant ones." Comments: - Andrea suggested the fs operation too but then it's more efficient to have it as a mm operation with fs side effects, because they don't immediatly know fd and physical offset of the range. It's possible to fixup in userland and to use the fs operation but it's more expensive, the vmas are already in the kernel and we can use them. Short term plan & Future Direction: - We seem to need this interface only for shmfs/tmpfs files in the short term. We have to add hooks into the filesystem for correctness and completeness. This is what this patch does. - In the future, plan is to support both fs and mmap apis also. This also involves (other) filesystem specific functions to be implemented. - Current patch doesn't support VM_NONLINEAR - which can be addressed in the future. Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Andrea Arcangeli <andrea@suse.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Cc: Ulrich Drepper <drepper@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-06 08:10:38 +00:00
return 0;
}
/*
* We enter with non-exclusive mmap_sem (to exclude vma changes,
* but allow concurrent faults), and pte mapped but not yet locked.
* We return with mmap_sem still held, but pte unmapped and unlocked.
*/
static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pte_t *page_table, pmd_t *pmd,
unsigned int flags, pte_t orig_pte)
{
spinlock_t *ptl;
struct page *page;
swp_entry_t entry;
pte_t pte;
memcg: introduce charge-commit-cancel style of functions There is a small race in do_swap_page(). When the page swapped-in is charged, the mapcount can be greater than 0. But, at the same time some process (shares it ) call unmap and make mapcount 1->0 and the page is uncharged. CPUA CPUB mapcount == 1. (1) charge if mapcount==0 zap_pte_range() (2) mapcount 1 => 0. (3) uncharge(). (success) (4) set page's rmap() mapcount 0=>1 Then, this swap page's account is leaked. For fixing this, I added a new interface. - charge account to res_counter by PAGE_SIZE and try to free pages if necessary. - commit register page_cgroup and add to LRU if necessary. - cancel uncharge PAGE_SIZE because of do_swap_page failure. CPUA (1) charge (always) (2) set page's rmap (mapcount > 0) (3) commit charge was necessary or not after set_pte(). This protocol uses PCG_USED bit on page_cgroup for avoiding over accounting. Usual mem_cgroup_charge_common() does charge -> commit at a time. And this patch also adds following function to clarify all charges. - mem_cgroup_newpage_charge() ....replacement for mem_cgroup_charge() called against newly allocated anon pages. - mem_cgroup_charge_migrate_fixup() called only from remove_migration_ptes(). we'll have to rewrite this later.(this patch just keeps old behavior) This function will be removed by additional patch to make migration clearer. Good for clarifying "what we do" Then, we have 4 following charge points. - newpage - swap-in - add-to-cache. - migration. [akpm@linux-foundation.org: add missing inline directives to stubs] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <balbir@in.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 02:07:48 +00:00
struct mem_cgroup *ptr = NULL;
mm: fault feedback #2 This patch completes Linus's wish that the fault return codes be made into bit flags, which I agree makes everything nicer. This requires requires all handle_mm_fault callers to be modified (possibly the modifications should go further and do things like fault accounting in handle_mm_fault -- however that would be for another patch). [akpm@linux-foundation.org: fix alpha build] [akpm@linux-foundation.org: fix s390 build] [akpm@linux-foundation.org: fix sparc build] [akpm@linux-foundation.org: fix sparc64 build] [akpm@linux-foundation.org: fix ia64 build] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Bryan Wu <bryan.wu@analog.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Matthew Wilcox <willy@debian.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Still apparently needs some ARM and PPC loving - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:47:05 +00:00
int ret = 0;
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 01:16:40 +00:00
if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
goto out;
entry = pte_to_swp_entry(orig_pte);
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:03:35 +00:00
if (is_migration_entry(entry)) {
migration_entry_wait(mm, pmd, address);
goto out;
}
delayacct_set_flag(DELAYACCT_PF_SWAPIN);
page = lookup_swap_cache(entry);
if (!page) {
grab_swap_token(mm); /* Contend for token _before_ read-in */
page = swapin_readahead(entry,
GFP_HIGHUSER_MOVABLE, vma, address);
if (!page) {
/*
* Back out if somebody else faulted in this pte
* while we released the pte lock.
*/
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
if (likely(pte_same(*page_table, orig_pte)))
ret = VM_FAULT_OOM;
delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
goto unlock;
}
/* Had to read the page from swap area: Major fault */
ret = VM_FAULT_MAJOR;
[PATCH] Light weight event counters The remaining counters in page_state after the zoned VM counter patches have been applied are all just for show in /proc/vmstat. They have no essential function for the VM. We use a simple increment of per cpu variables. In order to avoid the most severe races we disable preempt. Preempt does not prevent the race between an increment and an interrupt handler incrementing the same statistics counter. However, that race is exceedingly rare, we may only loose one increment or so and there is no requirement (at least not in kernel) that the vm event counters have to be accurate. In the non preempt case this results in a simple increment for each counter. For many architectures this will be reduced by the compiler to a single instruction. This single instruction is atomic for i386 and x86_64. And therefore even the rare race condition in an interrupt is avoided for both architectures in most cases. The patchset also adds an off switch for embedded systems that allows a building of linux kernels without these counters. The implementation of these counters is through inline code that hopefully results in only a single instruction increment instruction being emitted (i386, x86_64) or in the increment being hidden though instruction concurrency (EPIC architectures such as ia64 can get that done). Benefits: - VM event counter operations usually reduce to a single inline instruction on i386 and x86_64. - No interrupt disable, only preempt disable for the preempt case. Preempt disable can also be avoided by moving the counter into a spinlock. - Handling is similar to zoned VM counters. - Simple and easily extendable. - Can be omitted to reduce memory use for embedded use. References: RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=113512330605497&w=2 RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=114988082814934&w=2 local_t http://marc.theaimsgroup.com/?l=linux-kernel&m=114991748606690&w=2 V2 http://marc.theaimsgroup.com/?t=115014808400007&r=1&w=2 V3 http://marc.theaimsgroup.com/?l=linux-kernel&m=115024767022346&w=2 V4 http://marc.theaimsgroup.com/?l=linux-kernel&m=115047968808926&w=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 08:55:45 +00:00
count_vm_event(PGMAJFAULT);
}
lock_page(page);
delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
ret = VM_FAULT_OOM;
goto out_page;
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
}
/*
* Back out if somebody else already faulted in this pte.
*/
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
if (unlikely(!pte_same(*page_table, orig_pte)))
goto out_nomap;
if (unlikely(!PageUptodate(page))) {
ret = VM_FAULT_SIGBUS;
goto out_nomap;
}
memcg: mem+swap controller core This patch implements per cgroup limit for usage of memory+swap. However there are SwapCache, double counting of swap-cache and swap-entry is avoided. Mem+Swap controller works as following. - memory usage is limited by memory.limit_in_bytes. - memory + swap usage is limited by memory.memsw_limit_in_bytes. This has following benefits. - A user can limit total resource usage of mem+swap. Without this, because memory resource controller doesn't take care of usage of swap, a process can exhaust all the swap (by memory leak.) We can avoid this case. And Swap is shared resource but it cannot be reclaimed (goes back to memory) until it's used. This characteristic can be trouble when the memory is divided into some parts by cpuset or memcg. Assume group A and group B. After some application executes, the system can be.. Group A -- very large free memory space but occupy 99% of swap. Group B -- under memory shortage but cannot use swap...it's nearly full. Ability to set appropriate swap limit for each group is required. Maybe someone wonder "why not swap but mem+swap ?" - The global LRU(kswapd) can swap out arbitrary pages. Swap-out means to move account from memory to swap...there is no change in usage of mem+swap. In other words, when we want to limit the usage of swap without affecting global LRU, mem+swap limit is better than just limiting swap. Accounting target information is stored in swap_cgroup which is per swap entry record. Charge is done as following. map - charge page and memsw. unmap - uncharge page/memsw if not SwapCache. swap-out (__delete_from_swap_cache) - uncharge page - record mem_cgroup information to swap_cgroup. swap-in (do_swap_page) - charged as page and memsw. record in swap_cgroup is cleared. memsw accounting is decremented. swap-free (swap_free()) - if swap entry is freed, memsw is uncharged by PAGE_SIZE. There are people work under never-swap environments and consider swap as something bad. For such people, this mem+swap controller extension is just an overhead. This overhead is avoided by config or boot option. (see Kconfig. detail is not in this patch.) TODO: - maybe more optimization can be don in swap-in path. (but not very safe.) But we just do simple accounting at this stage. [nishimura@mxp.nes.nec.co.jp: make resize limit hold mutex] [hugh@veritas.com: memswap controller core swapcache fixes] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 02:08:00 +00:00
/*
* The page isn't present yet, go ahead with the fault.
*
* Be careful about the sequence of operations here.
* To get its accounting right, reuse_swap_page() must be called
* while the page is counted on swap but not yet in mapcount i.e.
* before page_add_anon_rmap() and swap_free(); try_to_free_swap()
* must be called after the swap_free(), or it will never succeed.
memcg: fix swap accounting leak Fix swapin charge operation of memcg. Now, memcg has hooks to swap-out operation and checks SwapCache is really unused or not. That check depends on contents of struct page. I.e. If PageAnon(page) && page_mapped(page), the page is recoginized as still-in-use. Now, reuse_swap_page() calles delete_from_swap_cache() before establishment of any rmap. Then, in followinig sequence (Page fault with WRITE) try_charge() (charge += PAGESIZE) commit_charge() (Check page_cgroup is used or not..) reuse_swap_page() -> delete_from_swapcache() -> mem_cgroup_uncharge_swapcache() (charge -= PAGESIZE) ...... New charge is uncharged soon.... To avoid this, move commit_charge() after page_mapcount() goes up to 1. By this, try_charge() (usage += PAGESIZE) reuse_swap_page() (may usage -= PAGESIZE if PCG_USED is set) commit_charge() (If page_cgroup is not marked as PCG_USED, add new charge.) Accounting will be correct. Changelog (v2) -> (v3) - fixed invalid charge to swp_entry==0. - updated documentation. Changelog (v1) -> (v2) - fixed comment. [nishimura@mxp.nes.nec.co.jp: swap accounting leak doc fix] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Tested-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 02:08:31 +00:00
* Because delete_from_swap_page() may be called by reuse_swap_page(),
* mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
* in page->private. In this case, a record in swap_cgroup is silently
* discarded at swap_free().
memcg: mem+swap controller core This patch implements per cgroup limit for usage of memory+swap. However there are SwapCache, double counting of swap-cache and swap-entry is avoided. Mem+Swap controller works as following. - memory usage is limited by memory.limit_in_bytes. - memory + swap usage is limited by memory.memsw_limit_in_bytes. This has following benefits. - A user can limit total resource usage of mem+swap. Without this, because memory resource controller doesn't take care of usage of swap, a process can exhaust all the swap (by memory leak.) We can avoid this case. And Swap is shared resource but it cannot be reclaimed (goes back to memory) until it's used. This characteristic can be trouble when the memory is divided into some parts by cpuset or memcg. Assume group A and group B. After some application executes, the system can be.. Group A -- very large free memory space but occupy 99% of swap. Group B -- under memory shortage but cannot use swap...it's nearly full. Ability to set appropriate swap limit for each group is required. Maybe someone wonder "why not swap but mem+swap ?" - The global LRU(kswapd) can swap out arbitrary pages. Swap-out means to move account from memory to swap...there is no change in usage of mem+swap. In other words, when we want to limit the usage of swap without affecting global LRU, mem+swap limit is better than just limiting swap. Accounting target information is stored in swap_cgroup which is per swap entry record. Charge is done as following. map - charge page and memsw. unmap - uncharge page/memsw if not SwapCache. swap-out (__delete_from_swap_cache) - uncharge page - record mem_cgroup information to swap_cgroup. swap-in (do_swap_page) - charged as page and memsw. record in swap_cgroup is cleared. memsw accounting is decremented. swap-free (swap_free()) - if swap entry is freed, memsw is uncharged by PAGE_SIZE. There are people work under never-swap environments and consider swap as something bad. For such people, this mem+swap controller extension is just an overhead. This overhead is avoided by config or boot option. (see Kconfig. detail is not in this patch.) TODO: - maybe more optimization can be don in swap-in path. (but not very safe.) But we just do simple accounting at this stage. [nishimura@mxp.nes.nec.co.jp: make resize limit hold mutex] [hugh@veritas.com: memswap controller core swapcache fixes] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 02:08:00 +00:00
*/
inc_mm_counter(mm, anon_rss);
pte = mk_pte(page, vma->vm_page_prot);
if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
pte = maybe_mkwrite(pte_mkdirty(pte), vma);
flags &= ~FAULT_FLAG_WRITE;
}
flush_icache_page(vma, page);
set_pte_at(mm, address, page_table, pte);
page_add_anon_rmap(page, vma, address);
memcg: fix swap accounting leak Fix swapin charge operation of memcg. Now, memcg has hooks to swap-out operation and checks SwapCache is really unused or not. That check depends on contents of struct page. I.e. If PageAnon(page) && page_mapped(page), the page is recoginized as still-in-use. Now, reuse_swap_page() calles delete_from_swap_cache() before establishment of any rmap. Then, in followinig sequence (Page fault with WRITE) try_charge() (charge += PAGESIZE) commit_charge() (Check page_cgroup is used or not..) reuse_swap_page() -> delete_from_swapcache() -> mem_cgroup_uncharge_swapcache() (charge -= PAGESIZE) ...... New charge is uncharged soon.... To avoid this, move commit_charge() after page_mapcount() goes up to 1. By this, try_charge() (usage += PAGESIZE) reuse_swap_page() (may usage -= PAGESIZE if PCG_USED is set) commit_charge() (If page_cgroup is not marked as PCG_USED, add new charge.) Accounting will be correct. Changelog (v2) -> (v3) - fixed invalid charge to swp_entry==0. - updated documentation. Changelog (v1) -> (v2) - fixed comment. [nishimura@mxp.nes.nec.co.jp: swap accounting leak doc fix] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Tested-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 02:08:31 +00:00
/* It's better to call commit-charge after rmap is established */
mem_cgroup_commit_charge_swapin(page, ptr);
swap_free(entry);
mlock: mlocked pages are unevictable Make sure that mlocked pages also live on the unevictable LRU, so kswapd will not scan them over and over again. This is achieved through various strategies: 1) add yet another page flag--PG_mlocked--to indicate that the page is locked for efficient testing in vmscan and, optionally, fault path. This allows early culling of unevictable pages, preventing them from getting to page_referenced()/try_to_unmap(). Also allows separate accounting of mlock'd pages, as Nick's original patch did. Note: Nick's original mlock patch used a PG_mlocked flag. I had removed this in favor of the PG_unevictable flag + an mlock_count [new page struct member]. I restored the PG_mlocked flag to eliminate the new count field. 2) add the mlock/unevictable infrastructure to mm/mlock.c, with internal APIs in mm/internal.h. This is a rework of Nick's original patch to these files, taking into account that mlocked pages are now kept on unevictable LRU list. 3) update vmscan.c:page_evictable() to check PageMlocked() and, if vma passed in, the vm_flags. Note that the vma will only be passed in for new pages in the fault path; and then only if the "cull unevictable pages in fault path" patch is included. 4) add try_to_unlock() to rmap.c to walk a page's rmap and ClearPageMlocked() if no other vmas have it mlocked. Reuses as much of try_to_unmap() as possible. This effectively replaces the use of one of the lru list links as an mlock count. If this mechanism let's pages in mlocked vmas leak through w/o PG_mlocked set [I don't know that it does], we should catch them later in try_to_unmap(). One hopes this will be rare, as it will be relatively expensive. Original mm/internal.h, mm/rmap.c and mm/mlock.c changes: Signed-off-by: Nick Piggin <npiggin@suse.de> splitlru: introduce __get_user_pages(): New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS. because current get_user_pages() can't grab PROT_NONE pages theresore it cause PROT_NONE pages can't munlock. [akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch] [akpm@linux-foundation.org: untangle patch interdependencies] [akpm@linux-foundation.org: fix things after out-of-order merging] [hugh@veritas.com: fix page-flags mess] [lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm'] [kosaki.motohiro@jp.fujitsu.com: build fix] [kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments] [kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 03:26:44 +00:00
if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
mm: try_to_free_swap replaces remove_exclusive_swap_page remove_exclusive_swap_page(): its problem is in living up to its name. It doesn't matter if someone else has a reference to the page (raised page_count); it doesn't matter if the page is mapped into userspace (raised page_mapcount - though that hints it may be worth keeping the swap): all that matters is that there be no more references to the swap (and no writeback in progress). swapoff (try_to_unuse) has been removing pages from swapcache for years, with no concern for page count or page mapcount, and we used to have a comment in lookup_swap_cache() recognizing that: if you go for a page of swapcache, you'll get the right page, but it could have been removed from swapcache by the time you get page lock. So, give up asking for exclusivity: get rid of remove_exclusive_swap_page(), and remove_exclusive_swap_page_ref() and remove_exclusive_swap_page_count() which were spawned for the recent LRU work: replace them by the simpler try_to_free_swap() which just checks page_swapcount(). Similarly, remove the page_count limitation from free_swap_and_count(), but assume that it's worth holding on to the swap if page is mapped and swap nowhere near full. Add a vm_swap_full() test in free_swap_cache()? It would be consistent, but I think we probably have enough for now. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Rik van Riel <riel@redhat.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Robin Holt <holt@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:39:36 +00:00
try_to_free_swap(page);
unlock_page(page);
if (flags & FAULT_FLAG_WRITE) {
ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
if (ret & VM_FAULT_ERROR)
ret &= VM_FAULT_ERROR;
goto out;
}
/* No need to invalidate - it was non-present before */
update_mmu_cache(vma, address, pte);
unlock:
pte_unmap_unlock(page_table, ptl);
out:
return ret;
out_nomap:
memcg: introduce charge-commit-cancel style of functions There is a small race in do_swap_page(). When the page swapped-in is charged, the mapcount can be greater than 0. But, at the same time some process (shares it ) call unmap and make mapcount 1->0 and the page is uncharged. CPUA CPUB mapcount == 1. (1) charge if mapcount==0 zap_pte_range() (2) mapcount 1 => 0. (3) uncharge(). (success) (4) set page's rmap() mapcount 0=>1 Then, this swap page's account is leaked. For fixing this, I added a new interface. - charge account to res_counter by PAGE_SIZE and try to free pages if necessary. - commit register page_cgroup and add to LRU if necessary. - cancel uncharge PAGE_SIZE because of do_swap_page failure. CPUA (1) charge (always) (2) set page's rmap (mapcount > 0) (3) commit charge was necessary or not after set_pte(). This protocol uses PCG_USED bit on page_cgroup for avoiding over accounting. Usual mem_cgroup_charge_common() does charge -> commit at a time. And this patch also adds following function to clarify all charges. - mem_cgroup_newpage_charge() ....replacement for mem_cgroup_charge() called against newly allocated anon pages. - mem_cgroup_charge_migrate_fixup() called only from remove_migration_ptes(). we'll have to rewrite this later.(this patch just keeps old behavior) This function will be removed by additional patch to make migration clearer. Good for clarifying "what we do" Then, we have 4 following charge points. - newpage - swap-in - add-to-cache. - migration. [akpm@linux-foundation.org: add missing inline directives to stubs] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <balbir@in.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 02:07:48 +00:00
mem_cgroup_cancel_charge_swapin(ptr);
pte_unmap_unlock(page_table, ptl);
out_page:
unlock_page(page);
page_cache_release(page);
return ret;
}
/*
* We enter with non-exclusive mmap_sem (to exclude vma changes,
* but allow concurrent faults), and pte mapped but not yet locked.
* We return with mmap_sem still held, but pte unmapped and unlocked.
*/
static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pte_t *page_table, pmd_t *pmd,
unsigned int flags)
{
struct page *page;
spinlock_t *ptl;
pte_t entry;
if (!(flags & FAULT_FLAG_WRITE)) {
entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
vma->vm_page_prot));
mm: reinstate ZERO_PAGE KAMEZAWA Hiroyuki has observed customers of earlier kernels taking advantage of the ZERO_PAGE: which we stopped do_anonymous_page() from using in 2.6.24. And there were a couple of regression reports on LKML. Following suggestions from Linus, reinstate do_anonymous_page() use of the ZERO_PAGE; but this time avoid dirtying its struct page cacheline with (map)count updates - let vm_normal_page() regard it as abnormal. Use it only on arches which __HAVE_ARCH_PTE_SPECIAL (x86, s390, sh32, most powerpc): that's not essential, but minimizes additional branches (keeping them in the unlikely pte_special case); and incidentally excludes mips (some models of which needed eight colours of ZERO_PAGE to avoid costly exceptions). Don't be fanatical about avoiding ZERO_PAGE updates: get_user_pages() callers won't want to make exceptions for it, so increment its count there. Changes to mlock and migration? happily seems not needed. In most places it's quicker to check pfn than struct page address: prepare a __read_mostly zero_pfn for that. Does get_dump_page() still need its ZERO_PAGE check? probably not, but keep it anyway. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Acked-by: Rik van Riel <riel@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:03:30 +00:00
ptl = pte_lockptr(mm, pmd);
spin_lock(ptl);
if (!pte_none(*page_table))
goto unlock;
goto setpte;
}
remove ZERO_PAGE The commit b5810039a54e5babf428e9a1e89fc1940fabff11 contains the note A last caveat: the ZERO_PAGE is now refcounted and managed with rmap (and thus mapcounted and count towards shared rss). These writes to the struct page could cause excessive cacheline bouncing on big systems. There are a number of ways this could be addressed if it is an issue. And indeed this cacheline bouncing has shown up on large SGI systems. There was a situation where an Altix system was essentially livelocked tearing down ZERO_PAGE pagetables when an HPC app aborted during startup. This situation can be avoided in userspace, but it does highlight the potential scalability problem with refcounting ZERO_PAGE, and corner cases where it can really hurt (we don't want the system to livelock!). There are several broad ways to fix this problem: 1. add back some special casing to avoid refcounting ZERO_PAGE 2. per-node or per-cpu ZERO_PAGES 3. remove the ZERO_PAGE completely I will argue for 3. The others should also fix the problem, but they result in more complex code than does 3, with little or no real benefit that I can see. Why? Inserting a ZERO_PAGE for anonymous read faults appears to be a false optimisation: if an application is performance critical, it would not be doing many read faults of new memory, or at least it could be expected to write to that memory soon afterwards. If cache or memory use is critical, it should not be working with a significant number of ZERO_PAGEs anyway (a more compact representation of zeroes should be used). As a sanity check -- mesuring on my desktop system, there are never many mappings to the ZERO_PAGE (eg. 2 or 3), thus memory usage here should not increase much without it. When running a make -j4 kernel compile on my dual core system, there are about 1,000 mappings to the ZERO_PAGE created per second, but about 1,000 ZERO_PAGE COW faults per second (less than 1 ZERO_PAGE mapping per second is torn down without being COWed). So removing ZERO_PAGE will save 1,000 page faults per second when running kbuild, while keeping it only saves less than 1 page clearing operation per second. 1 page clear is cheaper than a thousand faults, presumably, so there isn't an obvious loss. Neither the logical argument nor these basic tests give a guarantee of no regressions. However, this is a reasonable opportunity to try to remove the ZERO_PAGE from the pagefault path. If it is found to cause regressions, we can reintroduce it and just avoid refcounting it. The /dev/zero ZERO_PAGE usage and TLB tricks also get nuked. I don't see much use to them except on benchmarks. All other users of ZERO_PAGE are converted just to use ZERO_PAGE(0) for simplicity. We can look at replacing them all and maybe ripping out ZERO_PAGE completely when we are more satisfied with this solution. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus "snif" Torvalds <torvalds@linux-foundation.org>
2007-10-16 08:24:40 +00:00
/* Allocate our own private page. */
pte_unmap(page_table);
remove ZERO_PAGE The commit b5810039a54e5babf428e9a1e89fc1940fabff11 contains the note A last caveat: the ZERO_PAGE is now refcounted and managed with rmap (and thus mapcounted and count towards shared rss). These writes to the struct page could cause excessive cacheline bouncing on big systems. There are a number of ways this could be addressed if it is an issue. And indeed this cacheline bouncing has shown up on large SGI systems. There was a situation where an Altix system was essentially livelocked tearing down ZERO_PAGE pagetables when an HPC app aborted during startup. This situation can be avoided in userspace, but it does highlight the potential scalability problem with refcounting ZERO_PAGE, and corner cases where it can really hurt (we don't want the system to livelock!). There are several broad ways to fix this problem: 1. add back some special casing to avoid refcounting ZERO_PAGE 2. per-node or per-cpu ZERO_PAGES 3. remove the ZERO_PAGE completely I will argue for 3. The others should also fix the problem, but they result in more complex code than does 3, with little or no real benefit that I can see. Why? Inserting a ZERO_PAGE for anonymous read faults appears to be a false optimisation: if an application is performance critical, it would not be doing many read faults of new memory, or at least it could be expected to write to that memory soon afterwards. If cache or memory use is critical, it should not be working with a significant number of ZERO_PAGEs anyway (a more compact representation of zeroes should be used). As a sanity check -- mesuring on my desktop system, there are never many mappings to the ZERO_PAGE (eg. 2 or 3), thus memory usage here should not increase much without it. When running a make -j4 kernel compile on my dual core system, there are about 1,000 mappings to the ZERO_PAGE created per second, but about 1,000 ZERO_PAGE COW faults per second (less than 1 ZERO_PAGE mapping per second is torn down without being COWed). So removing ZERO_PAGE will save 1,000 page faults per second when running kbuild, while keeping it only saves less than 1 page clearing operation per second. 1 page clear is cheaper than a thousand faults, presumably, so there isn't an obvious loss. Neither the logical argument nor these basic tests give a guarantee of no regressions. However, this is a reasonable opportunity to try to remove the ZERO_PAGE from the pagefault path. If it is found to cause regressions, we can reintroduce it and just avoid refcounting it. The /dev/zero ZERO_PAGE usage and TLB tricks also get nuked. I don't see much use to them except on benchmarks. All other users of ZERO_PAGE are converted just to use ZERO_PAGE(0) for simplicity. We can look at replacing them all and maybe ripping out ZERO_PAGE completely when we are more satisfied with this solution. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus "snif" Torvalds <torvalds@linux-foundation.org>
2007-10-16 08:24:40 +00:00
if (unlikely(anon_vma_prepare(vma)))
goto oom;
page = alloc_zeroed_user_highpage_movable(vma, address);
if (!page)
goto oom;
mm: fix PageUptodate data race After running SetPageUptodate, preceeding stores to the page contents to actually bring it uptodate may not be ordered with the store to set the page uptodate. Therefore, another CPU which checks PageUptodate is true, then reads the page contents can get stale data. Fix this by having an smp_wmb before SetPageUptodate, and smp_rmb after PageUptodate. Many places that test PageUptodate, do so with the page locked, and this would be enough to ensure memory ordering in those places if SetPageUptodate were only called while the page is locked. Unfortunately that is not always the case for some filesystems, but it could be an idea for the future. Also bring the handling of anonymous page uptodateness in line with that of file backed page management, by marking anon pages as uptodate when they _are_ uptodate, rather than when our implementation requires that they be marked as such. Doing allows us to get rid of the smp_wmb's in the page copying functions, which were especially added for anonymous pages for an analogous memory ordering problem. Both file and anonymous pages are handled with the same barriers. FAQ: Q. Why not do this in flush_dcache_page? A. Firstly, flush_dcache_page handles only one side (the smb side) of the ordering protocol; we'd still need smp_rmb somewhere. Secondly, hiding away memory barriers in a completely unrelated function is nasty; at least in the PageUptodate macros, they are located together with (half) the operations involved in the ordering. Thirdly, the smp_wmb is only required when first bringing the page uptodate, wheras flush_dcache_page should be called each time it is written to through the kernel mapping. It is logically the wrong place to put it. Q. Why does this increase my text size / reduce my performance / etc. A. Because it is adding the necessary instructions to eliminate the data-race. Q. Can it be improved? A. Yes, eg. if you were to create a rule that all SetPageUptodate operations run under the page lock, we could avoid the smp_rmb places where PageUptodate is queried under the page lock. Requires audit of all filesystems and at least some would need reworking. That's great you're interested, I'm eagerly awaiting your patches. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:29:34 +00:00
__SetPageUptodate(page);
if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
goto oom_free_page;
remove ZERO_PAGE The commit b5810039a54e5babf428e9a1e89fc1940fabff11 contains the note A last caveat: the ZERO_PAGE is now refcounted and managed with rmap (and thus mapcounted and count towards shared rss). These writes to the struct page could cause excessive cacheline bouncing on big systems. There are a number of ways this could be addressed if it is an issue. And indeed this cacheline bouncing has shown up on large SGI systems. There was a situation where an Altix system was essentially livelocked tearing down ZERO_PAGE pagetables when an HPC app aborted during startup. This situation can be avoided in userspace, but it does highlight the potential scalability problem with refcounting ZERO_PAGE, and corner cases where it can really hurt (we don't want the system to livelock!). There are several broad ways to fix this problem: 1. add back some special casing to avoid refcounting ZERO_PAGE 2. per-node or per-cpu ZERO_PAGES 3. remove the ZERO_PAGE completely I will argue for 3. The others should also fix the problem, but they result in more complex code than does 3, with little or no real benefit that I can see. Why? Inserting a ZERO_PAGE for anonymous read faults appears to be a false optimisation: if an application is performance critical, it would not be doing many read faults of new memory, or at least it could be expected to write to that memory soon afterwards. If cache or memory use is critical, it should not be working with a significant number of ZERO_PAGEs anyway (a more compact representation of zeroes should be used). As a sanity check -- mesuring on my desktop system, there are never many mappings to the ZERO_PAGE (eg. 2 or 3), thus memory usage here should not increase much without it. When running a make -j4 kernel compile on my dual core system, there are about 1,000 mappings to the ZERO_PAGE created per second, but about 1,000 ZERO_PAGE COW faults per second (less than 1 ZERO_PAGE mapping per second is torn down without being COWed). So removing ZERO_PAGE will save 1,000 page faults per second when running kbuild, while keeping it only saves less than 1 page clearing operation per second. 1 page clear is cheaper than a thousand faults, presumably, so there isn't an obvious loss. Neither the logical argument nor these basic tests give a guarantee of no regressions. However, this is a reasonable opportunity to try to remove the ZERO_PAGE from the pagefault path. If it is found to cause regressions, we can reintroduce it and just avoid refcounting it. The /dev/zero ZERO_PAGE usage and TLB tricks also get nuked. I don't see much use to them except on benchmarks. All other users of ZERO_PAGE are converted just to use ZERO_PAGE(0) for simplicity. We can look at replacing them all and maybe ripping out ZERO_PAGE completely when we are more satisfied with this solution. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus "snif" Torvalds <torvalds@linux-foundation.org>
2007-10-16 08:24:40 +00:00
entry = mk_pte(page, vma->vm_page_prot);
if (vma->vm_flags & VM_WRITE)
entry = pte_mkwrite(pte_mkdirty(entry));
remove ZERO_PAGE The commit b5810039a54e5babf428e9a1e89fc1940fabff11 contains the note A last caveat: the ZERO_PAGE is now refcounted and managed with rmap (and thus mapcounted and count towards shared rss). These writes to the struct page could cause excessive cacheline bouncing on big systems. There are a number of ways this could be addressed if it is an issue. And indeed this cacheline bouncing has shown up on large SGI systems. There was a situation where an Altix system was essentially livelocked tearing down ZERO_PAGE pagetables when an HPC app aborted during startup. This situation can be avoided in userspace, but it does highlight the potential scalability problem with refcounting ZERO_PAGE, and corner cases where it can really hurt (we don't want the system to livelock!). There are several broad ways to fix this problem: 1. add back some special casing to avoid refcounting ZERO_PAGE 2. per-node or per-cpu ZERO_PAGES 3. remove the ZERO_PAGE completely I will argue for 3. The others should also fix the problem, but they result in more complex code than does 3, with little or no real benefit that I can see. Why? Inserting a ZERO_PAGE for anonymous read faults appears to be a false optimisation: if an application is performance critical, it would not be doing many read faults of new memory, or at least it could be expected to write to that memory soon afterwards. If cache or memory use is critical, it should not be working with a significant number of ZERO_PAGEs anyway (a more compact representation of zeroes should be used). As a sanity check -- mesuring on my desktop system, there are never many mappings to the ZERO_PAGE (eg. 2 or 3), thus memory usage here should not increase much without it. When running a make -j4 kernel compile on my dual core system, there are about 1,000 mappings to the ZERO_PAGE created per second, but about 1,000 ZERO_PAGE COW faults per second (less than 1 ZERO_PAGE mapping per second is torn down without being COWed). So removing ZERO_PAGE will save 1,000 page faults per second when running kbuild, while keeping it only saves less than 1 page clearing operation per second. 1 page clear is cheaper than a thousand faults, presumably, so there isn't an obvious loss. Neither the logical argument nor these basic tests give a guarantee of no regressions. However, this is a reasonable opportunity to try to remove the ZERO_PAGE from the pagefault path. If it is found to cause regressions, we can reintroduce it and just avoid refcounting it. The /dev/zero ZERO_PAGE usage and TLB tricks also get nuked. I don't see much use to them except on benchmarks. All other users of ZERO_PAGE are converted just to use ZERO_PAGE(0) for simplicity. We can look at replacing them all and maybe ripping out ZERO_PAGE completely when we are more satisfied with this solution. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus "snif" Torvalds <torvalds@linux-foundation.org>
2007-10-16 08:24:40 +00:00
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
ksm: fix deadlock with munlock in exit_mmap Rawhide users have reported hang at startup when cryptsetup is run: the same problem can be simply reproduced by running a program int main() { mlockall(MCL_CURRENT | MCL_FUTURE); return 0; } The problem is that exit_mmap() applies munlock_vma_pages_all() to clean up VM_LOCKED areas, and its current implementation (stupidly) tries to fault in absent pages, for example where PROT_NONE prevented them being faulted in when mlocking. Whereas the "ksm: fix oom deadlock" patch, knowing there's a race by which KSM might try to fault in pages after exit_mmap() had finally zapped the range, backs out of such faults doing nothing when its ksm_test_exit() notices mm_users 0. So revert that part of "ksm: fix oom deadlock" which moved the ksm_exit() call from before exit_mmap() to the middle of exit_mmap(); and remove those ksm_test_exit() checks from the page fault paths, so allowing the munlocking to proceed without interference. ksm_exit, if there are rmap_items still chained on this mm slot, takes mmap_sem write side: so preventing KSM from working on an mm while exit_mmap runs. And KSM will bail out as soon as it notices that mm_users is already zero, thanks to its internal ksm_test_exit checks. So that when a task is killed by OOM killer or the user, KSM will not indefinitely prevent it from running exit_mmap to release its memory. This does break a part of what "ksm: fix oom deadlock" was trying to achieve. When unmerging KSM (echo 2 >/sys/kernel/mm/ksm), and even when ksmd itself has to cancel a KSM page, it is possible that the first OOM-kill victim would be the KSM process being faulted: then its memory won't be freed until a second victim has been selected (freeing memory for the unmerging fault to complete). But the OOM killer is already liable to kill a second victim once the intended victim's p->mm goes to NULL: so there's not much point in rejecting this KSM patch before fixing that OOM behaviour. It is very much more important to allow KSM users to boot up, than to haggle over an unlikely and poorly supported OOM case. We also intend to fix munlocking to not fault pages: at which point this patch _could_ be reverted; though that would be controversial, so we hope to find a better solution. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Justin M. Forbes <jforbes@redhat.com> Acked-for-now-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Izik Eidus <ieidus@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:02:22 +00:00
if (!pte_none(*page_table))
remove ZERO_PAGE The commit b5810039a54e5babf428e9a1e89fc1940fabff11 contains the note A last caveat: the ZERO_PAGE is now refcounted and managed with rmap (and thus mapcounted and count towards shared rss). These writes to the struct page could cause excessive cacheline bouncing on big systems. There are a number of ways this could be addressed if it is an issue. And indeed this cacheline bouncing has shown up on large SGI systems. There was a situation where an Altix system was essentially livelocked tearing down ZERO_PAGE pagetables when an HPC app aborted during startup. This situation can be avoided in userspace, but it does highlight the potential scalability problem with refcounting ZERO_PAGE, and corner cases where it can really hurt (we don't want the system to livelock!). There are several broad ways to fix this problem: 1. add back some special casing to avoid refcounting ZERO_PAGE 2. per-node or per-cpu ZERO_PAGES 3. remove the ZERO_PAGE completely I will argue for 3. The others should also fix the problem, but they result in more complex code than does 3, with little or no real benefit that I can see. Why? Inserting a ZERO_PAGE for anonymous read faults appears to be a false optimisation: if an application is performance critical, it would not be doing many read faults of new memory, or at least it could be expected to write to that memory soon afterwards. If cache or memory use is critical, it should not be working with a significant number of ZERO_PAGEs anyway (a more compact representation of zeroes should be used). As a sanity check -- mesuring on my desktop system, there are never many mappings to the ZERO_PAGE (eg. 2 or 3), thus memory usage here should not increase much without it. When running a make -j4 kernel compile on my dual core system, there are about 1,000 mappings to the ZERO_PAGE created per second, but about 1,000 ZERO_PAGE COW faults per second (less than 1 ZERO_PAGE mapping per second is torn down without being COWed). So removing ZERO_PAGE will save 1,000 page faults per second when running kbuild, while keeping it only saves less than 1 page clearing operation per second. 1 page clear is cheaper than a thousand faults, presumably, so there isn't an obvious loss. Neither the logical argument nor these basic tests give a guarantee of no regressions. However, this is a reasonable opportunity to try to remove the ZERO_PAGE from the pagefault path. If it is found to cause regressions, we can reintroduce it and just avoid refcounting it. The /dev/zero ZERO_PAGE usage and TLB tricks also get nuked. I don't see much use to them except on benchmarks. All other users of ZERO_PAGE are converted just to use ZERO_PAGE(0) for simplicity. We can look at replacing them all and maybe ripping out ZERO_PAGE completely when we are more satisfied with this solution. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus "snif" Torvalds <torvalds@linux-foundation.org>
2007-10-16 08:24:40 +00:00
goto release;
ksm: fix oom deadlock There's a now-obvious deadlock in KSM's out-of-memory handling: imagine ksmd or KSM_RUN_UNMERGE handling, holding ksm_thread_mutex, trying to allocate a page to break KSM in an mm which becomes the OOM victim (quite likely in the unmerge case): it's killed and goes to exit, and hangs there waiting to acquire ksm_thread_mutex. Clearly we must not require ksm_thread_mutex in __ksm_exit, simple though that made everything else: perhaps use mmap_sem somehow? And part of the answer lies in the comments on unmerge_ksm_pages: __ksm_exit should also leave all the rmap_item removal to ksmd. But there's a fundamental problem, that KSM relies upon mmap_sem to guarantee the consistency of the mm it's dealing with, yet exit_mmap tears down an mm without taking mmap_sem. And bumping mm_users won't help at all, that just ensures that the pages the OOM killer assumes are on their way to being freed will not be freed. The best answer seems to be, to move the ksm_exit callout from just before exit_mmap, to the middle of exit_mmap: after the mm's pages have been freed (if the mmu_gather is flushed), but before its page tables and vma structures have been freed; and down_write,up_write mmap_sem there to serialize with KSM's own reliance on mmap_sem. But KSM then needs to be careful, whenever it downs mmap_sem, to check that the mm is not already exiting: there's a danger of using find_vma on a layout that's being torn apart, or writing into page tables which have been freed for reuse; and even do_anonymous_page and __do_fault need to check they're not being called by break_ksm to reinstate a pte after zap_pte_range has zapped that page table. Though it might be clearer to add an exiting flag, set while holding mmap_sem in __ksm_exit, that wouldn't cover the issue of reinstating a zapped pte. All we need is to check whether mm_users is 0 - but must remember that ksmd may detect that before __ksm_exit is reached. So, ksm_test_exit(mm) added to comment such checks on mm->mm_users. __ksm_exit now has to leave clearing up the rmap_items to ksmd, that needs ksm_thread_mutex; but shift the exiting mm just after the ksm_scan cursor so that it will soon be dealt with. __ksm_enter raise mm_count to hold the mm_struct, ksmd's exit processing (exactly like its processing when it finds all VM_MERGEABLEs unmapped) mmdrop it, similar procedure for KSM_RUN_UNMERGE (which has stopped ksmd). But also give __ksm_exit a fast path: when there's no complication (no rmap_items attached to mm and it's not at the ksm_scan cursor), it can safely do all the exiting work itself. This is not just an optimization: when ksmd is not running, the raised mm_count would otherwise leak mm_structs. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Acked-by: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:02:20 +00:00
remove ZERO_PAGE The commit b5810039a54e5babf428e9a1e89fc1940fabff11 contains the note A last caveat: the ZERO_PAGE is now refcounted and managed with rmap (and thus mapcounted and count towards shared rss). These writes to the struct page could cause excessive cacheline bouncing on big systems. There are a number of ways this could be addressed if it is an issue. And indeed this cacheline bouncing has shown up on large SGI systems. There was a situation where an Altix system was essentially livelocked tearing down ZERO_PAGE pagetables when an HPC app aborted during startup. This situation can be avoided in userspace, but it does highlight the potential scalability problem with refcounting ZERO_PAGE, and corner cases where it can really hurt (we don't want the system to livelock!). There are several broad ways to fix this problem: 1. add back some special casing to avoid refcounting ZERO_PAGE 2. per-node or per-cpu ZERO_PAGES 3. remove the ZERO_PAGE completely I will argue for 3. The others should also fix the problem, but they result in more complex code than does 3, with little or no real benefit that I can see. Why? Inserting a ZERO_PAGE for anonymous read faults appears to be a false optimisation: if an application is performance critical, it would not be doing many read faults of new memory, or at least it could be expected to write to that memory soon afterwards. If cache or memory use is critical, it should not be working with a significant number of ZERO_PAGEs anyway (a more compact representation of zeroes should be used). As a sanity check -- mesuring on my desktop system, there are never many mappings to the ZERO_PAGE (eg. 2 or 3), thus memory usage here should not increase much without it. When running a make -j4 kernel compile on my dual core system, there are about 1,000 mappings to the ZERO_PAGE created per second, but about 1,000 ZERO_PAGE COW faults per second (less than 1 ZERO_PAGE mapping per second is torn down without being COWed). So removing ZERO_PAGE will save 1,000 page faults per second when running kbuild, while keeping it only saves less than 1 page clearing operation per second. 1 page clear is cheaper than a thousand faults, presumably, so there isn't an obvious loss. Neither the logical argument nor these basic tests give a guarantee of no regressions. However, this is a reasonable opportunity to try to remove the ZERO_PAGE from the pagefault path. If it is found to cause regressions, we can reintroduce it and just avoid refcounting it. The /dev/zero ZERO_PAGE usage and TLB tricks also get nuked. I don't see much use to them except on benchmarks. All other users of ZERO_PAGE are converted just to use ZERO_PAGE(0) for simplicity. We can look at replacing them all and maybe ripping out ZERO_PAGE completely when we are more satisfied with this solution. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus "snif" Torvalds <torvalds@linux-foundation.org>
2007-10-16 08:24:40 +00:00
inc_mm_counter(mm, anon_rss);
page_add_new_anon_rmap(page, vma, address);
mm: reinstate ZERO_PAGE KAMEZAWA Hiroyuki has observed customers of earlier kernels taking advantage of the ZERO_PAGE: which we stopped do_anonymous_page() from using in 2.6.24. And there were a couple of regression reports on LKML. Following suggestions from Linus, reinstate do_anonymous_page() use of the ZERO_PAGE; but this time avoid dirtying its struct page cacheline with (map)count updates - let vm_normal_page() regard it as abnormal. Use it only on arches which __HAVE_ARCH_PTE_SPECIAL (x86, s390, sh32, most powerpc): that's not essential, but minimizes additional branches (keeping them in the unlikely pte_special case); and incidentally excludes mips (some models of which needed eight colours of ZERO_PAGE to avoid costly exceptions). Don't be fanatical about avoiding ZERO_PAGE updates: get_user_pages() callers won't want to make exceptions for it, so increment its count there. Changes to mlock and migration? happily seems not needed. In most places it's quicker to check pfn than struct page address: prepare a __read_mostly zero_pfn for that. Does get_dump_page() still need its ZERO_PAGE check? probably not, but keep it anyway. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Acked-by: Rik van Riel <riel@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:03:30 +00:00
setpte:
set_pte_at(mm, address, page_table, entry);
/* No need to invalidate - it was non-present before */
update_mmu_cache(vma, address, entry);
unlock:
pte_unmap_unlock(page_table, ptl);
mm: fault feedback #2 This patch completes Linus's wish that the fault return codes be made into bit flags, which I agree makes everything nicer. This requires requires all handle_mm_fault callers to be modified (possibly the modifications should go further and do things like fault accounting in handle_mm_fault -- however that would be for another patch). [akpm@linux-foundation.org: fix alpha build] [akpm@linux-foundation.org: fix s390 build] [akpm@linux-foundation.org: fix sparc build] [akpm@linux-foundation.org: fix sparc64 build] [akpm@linux-foundation.org: fix ia64 build] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Bryan Wu <bryan.wu@analog.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Matthew Wilcox <willy@debian.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Still apparently needs some ARM and PPC loving - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:47:05 +00:00
return 0;
release:
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
mem_cgroup_uncharge_page(page);
page_cache_release(page);
goto unlock;
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
oom_free_page:
page_cache_release(page);
oom:
return VM_FAULT_OOM;
}
/*
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
* __do_fault() tries to create a new page mapping. It aggressively
* tries to share with existing pages, but makes a separate copy if
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
* the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
* the next page fault.
*
* As this is called only for pages that do not currently exist, we
* do not need to flush old virtual caches or the TLB.
*
* We enter with non-exclusive mmap_sem (to exclude vma changes,
* but allow concurrent faults), and pte neither mapped nor locked.
* We return with mmap_sem still held, but pte unmapped and unlocked.
*/
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pmd_t *pmd,
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
{
pte_t *page_table;
spinlock_t *ptl;
struct page *page;
pte_t entry;
int anon = 0;
int charged = 0;
[PATCH] mm: tracking shared dirty pages Tracking of dirty pages in shared writeable mmap()s. The idea is simple: write protect clean shared writeable pages, catch the write-fault, make writeable and set dirty. On page write-back clean all the PTE dirty bits and write protect them once again. The implementation is a tad harder, mainly because the default backing_dev_info capabilities were too loosely maintained. Hence it is not enough to test the backing_dev_info for cap_account_dirty. The current heuristic is as follows, a VMA is eligible when: - its shared writeable (vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED) - it is not a 'special' mapping (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) == 0 - the backing_dev_info is cap_account_dirty mapping_cap_account_dirty(vma->vm_file->f_mapping) - f_op->mmap() didn't change the default page protection Page from remap_pfn_range() are explicitly excluded because their COW semantics are already horrid enough (see vm_normal_page() in do_wp_page()) and because they don't have a backing store anyway. mprotect() is taught about the new behaviour as well. However it overrides the last condition. Cleaning the pages on write-back is done with page_mkclean() a new rmap call. It can be called on any page, but is currently only implemented for mapped pages, if the page is found the be of a VMA that accounts dirty pages it will also wrprotect the PTE. Finally, in fs/buffers.c:try_to_free_buffers(); remove clear_page_dirty() from under ->private_lock. This seems to be safe, since ->private_lock is used to serialize access to the buffers, not the page itself. This is needed because clear_page_dirty() will call into page_mkclean() and would thereby violate locking order. [dhowells@redhat.com: Provide a page_mkclean() implementation for NOMMU] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 06:30:57 +00:00
struct page *dirty_page = NULL;
struct vm_fault vmf;
int ret;
int page_mkwrite = 0;
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
vmf.virtual_address = (void __user *)(address & PAGE_MASK);
vmf.pgoff = pgoff;
vmf.flags = flags;
vmf.page = NULL;
ret = vma->vm_ops->fault(vma, &vmf);
if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
return ret;
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:57 +00:00
/*
* For consistency in subsequent calls, make the faulted page always
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:57 +00:00
* locked.
*/
mm: fault feedback #2 This patch completes Linus's wish that the fault return codes be made into bit flags, which I agree makes everything nicer. This requires requires all handle_mm_fault callers to be modified (possibly the modifications should go further and do things like fault accounting in handle_mm_fault -- however that would be for another patch). [akpm@linux-foundation.org: fix alpha build] [akpm@linux-foundation.org: fix s390 build] [akpm@linux-foundation.org: fix sparc build] [akpm@linux-foundation.org: fix sparc64 build] [akpm@linux-foundation.org: fix ia64 build] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Bryan Wu <bryan.wu@analog.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Matthew Wilcox <willy@debian.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Still apparently needs some ARM and PPC loving - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:47:05 +00:00
if (unlikely(!(ret & VM_FAULT_LOCKED)))
lock_page(vmf.page);
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
else
VM_BUG_ON(!PageLocked(vmf.page));
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:57 +00:00
/*
* Should we do an early C-O-W break?
*/
page = vmf.page;
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
if (flags & FAULT_FLAG_WRITE) {
[PATCH] add page_mkwrite() vm_operations method Add a new VMA operation to notify a filesystem or other driver about the MMU generating a fault because userspace attempted to write to a page mapped through a read-only PTE. This facility permits the filesystem or driver to: (*) Implement storage allocation/reservation on attempted write, and so to deal with problems such as ENOSPC more gracefully (perhaps by generating SIGBUS). (*) Delay making the page writable until the contents have been written to a backing cache. This is useful for NFS/AFS when using FS-Cache/CacheFS. It permits the filesystem to have some guarantee about the state of the cache. (*) Account and limit number of dirty pages. This is one piece of the puzzle needed to make shared writable mapping work safely in FUSE. Needed by cachefs (Or is it cachefiles? Or fscache? <head spins>). At least four other groups have stated an interest in it or a desire to use the functionality it provides: FUSE, OCFS2, NTFS and JFFS2. Also, things like EXT3 really ought to use it to deal with the case of shared-writable mmap encountering ENOSPC before we permit the page to be dirtied. From: Peter Zijlstra <a.p.zijlstra@chello.nl> get_user_pages(.write=1, .force=1) can generate COW hits on read-only shared mappings, this patch traps those as mkpage_write candidates and fails to handle them the old way. Signed-off-by: David Howells <dhowells@redhat.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Joel Becker <Joel.Becker@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:03:43 +00:00
if (!(vma->vm_flags & VM_SHARED)) {
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
anon = 1;
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:57 +00:00
if (unlikely(anon_vma_prepare(vma))) {
ret = VM_FAULT_OOM;
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
goto out;
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:57 +00:00
}
mm: fault feedback #2 This patch completes Linus's wish that the fault return codes be made into bit flags, which I agree makes everything nicer. This requires requires all handle_mm_fault callers to be modified (possibly the modifications should go further and do things like fault accounting in handle_mm_fault -- however that would be for another patch). [akpm@linux-foundation.org: fix alpha build] [akpm@linux-foundation.org: fix s390 build] [akpm@linux-foundation.org: fix sparc build] [akpm@linux-foundation.org: fix sparc64 build] [akpm@linux-foundation.org: fix ia64 build] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Bryan Wu <bryan.wu@analog.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Matthew Wilcox <willy@debian.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Still apparently needs some ARM and PPC loving - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:47:05 +00:00
page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
vma, address);
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:57 +00:00
if (!page) {
ret = VM_FAULT_OOM;
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
goto out;
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:57 +00:00
}
if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
ret = VM_FAULT_OOM;
page_cache_release(page);
goto out;
}
charged = 1;
mlock: mlocked pages are unevictable Make sure that mlocked pages also live on the unevictable LRU, so kswapd will not scan them over and over again. This is achieved through various strategies: 1) add yet another page flag--PG_mlocked--to indicate that the page is locked for efficient testing in vmscan and, optionally, fault path. This allows early culling of unevictable pages, preventing them from getting to page_referenced()/try_to_unmap(). Also allows separate accounting of mlock'd pages, as Nick's original patch did. Note: Nick's original mlock patch used a PG_mlocked flag. I had removed this in favor of the PG_unevictable flag + an mlock_count [new page struct member]. I restored the PG_mlocked flag to eliminate the new count field. 2) add the mlock/unevictable infrastructure to mm/mlock.c, with internal APIs in mm/internal.h. This is a rework of Nick's original patch to these files, taking into account that mlocked pages are now kept on unevictable LRU list. 3) update vmscan.c:page_evictable() to check PageMlocked() and, if vma passed in, the vm_flags. Note that the vma will only be passed in for new pages in the fault path; and then only if the "cull unevictable pages in fault path" patch is included. 4) add try_to_unlock() to rmap.c to walk a page's rmap and ClearPageMlocked() if no other vmas have it mlocked. Reuses as much of try_to_unmap() as possible. This effectively replaces the use of one of the lru list links as an mlock count. If this mechanism let's pages in mlocked vmas leak through w/o PG_mlocked set [I don't know that it does], we should catch them later in try_to_unmap(). One hopes this will be rare, as it will be relatively expensive. Original mm/internal.h, mm/rmap.c and mm/mlock.c changes: Signed-off-by: Nick Piggin <npiggin@suse.de> splitlru: introduce __get_user_pages(): New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS. because current get_user_pages() can't grab PROT_NONE pages theresore it cause PROT_NONE pages can't munlock. [akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch] [akpm@linux-foundation.org: untangle patch interdependencies] [akpm@linux-foundation.org: fix things after out-of-order merging] [hugh@veritas.com: fix page-flags mess] [lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm'] [kosaki.motohiro@jp.fujitsu.com: build fix] [kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments] [kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 03:26:44 +00:00
/*
* Don't let another task, with possibly unlocked vma,
* keep the mlocked page.
*/
if (vma->vm_flags & VM_LOCKED)
clear_page_mlock(vmf.page);
copy_user_highpage(page, vmf.page, address, vma);
mm: fix PageUptodate data race After running SetPageUptodate, preceeding stores to the page contents to actually bring it uptodate may not be ordered with the store to set the page uptodate. Therefore, another CPU which checks PageUptodate is true, then reads the page contents can get stale data. Fix this by having an smp_wmb before SetPageUptodate, and smp_rmb after PageUptodate. Many places that test PageUptodate, do so with the page locked, and this would be enough to ensure memory ordering in those places if SetPageUptodate were only called while the page is locked. Unfortunately that is not always the case for some filesystems, but it could be an idea for the future. Also bring the handling of anonymous page uptodateness in line with that of file backed page management, by marking anon pages as uptodate when they _are_ uptodate, rather than when our implementation requires that they be marked as such. Doing allows us to get rid of the smp_wmb's in the page copying functions, which were especially added for anonymous pages for an analogous memory ordering problem. Both file and anonymous pages are handled with the same barriers. FAQ: Q. Why not do this in flush_dcache_page? A. Firstly, flush_dcache_page handles only one side (the smb side) of the ordering protocol; we'd still need smp_rmb somewhere. Secondly, hiding away memory barriers in a completely unrelated function is nasty; at least in the PageUptodate macros, they are located together with (half) the operations involved in the ordering. Thirdly, the smp_wmb is only required when first bringing the page uptodate, wheras flush_dcache_page should be called each time it is written to through the kernel mapping. It is logically the wrong place to put it. Q. Why does this increase my text size / reduce my performance / etc. A. Because it is adding the necessary instructions to eliminate the data-race. Q. Can it be improved? A. Yes, eg. if you were to create a rule that all SetPageUptodate operations run under the page lock, we could avoid the smp_rmb places where PageUptodate is queried under the page lock. Requires audit of all filesystems and at least some would need reworking. That's great you're interested, I'm eagerly awaiting your patches. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:29:34 +00:00
__SetPageUptodate(page);
[PATCH] add page_mkwrite() vm_operations method Add a new VMA operation to notify a filesystem or other driver about the MMU generating a fault because userspace attempted to write to a page mapped through a read-only PTE. This facility permits the filesystem or driver to: (*) Implement storage allocation/reservation on attempted write, and so to deal with problems such as ENOSPC more gracefully (perhaps by generating SIGBUS). (*) Delay making the page writable until the contents have been written to a backing cache. This is useful for NFS/AFS when using FS-Cache/CacheFS. It permits the filesystem to have some guarantee about the state of the cache. (*) Account and limit number of dirty pages. This is one piece of the puzzle needed to make shared writable mapping work safely in FUSE. Needed by cachefs (Or is it cachefiles? Or fscache? <head spins>). At least four other groups have stated an interest in it or a desire to use the functionality it provides: FUSE, OCFS2, NTFS and JFFS2. Also, things like EXT3 really ought to use it to deal with the case of shared-writable mmap encountering ENOSPC before we permit the page to be dirtied. From: Peter Zijlstra <a.p.zijlstra@chello.nl> get_user_pages(.write=1, .force=1) can generate COW hits on read-only shared mappings, this patch traps those as mkpage_write candidates and fails to handle them the old way. Signed-off-by: David Howells <dhowells@redhat.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Joel Becker <Joel.Becker@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:03:43 +00:00
} else {
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
/*
* If the page will be shareable, see if the backing
[PATCH] add page_mkwrite() vm_operations method Add a new VMA operation to notify a filesystem or other driver about the MMU generating a fault because userspace attempted to write to a page mapped through a read-only PTE. This facility permits the filesystem or driver to: (*) Implement storage allocation/reservation on attempted write, and so to deal with problems such as ENOSPC more gracefully (perhaps by generating SIGBUS). (*) Delay making the page writable until the contents have been written to a backing cache. This is useful for NFS/AFS when using FS-Cache/CacheFS. It permits the filesystem to have some guarantee about the state of the cache. (*) Account and limit number of dirty pages. This is one piece of the puzzle needed to make shared writable mapping work safely in FUSE. Needed by cachefs (Or is it cachefiles? Or fscache? <head spins>). At least four other groups have stated an interest in it or a desire to use the functionality it provides: FUSE, OCFS2, NTFS and JFFS2. Also, things like EXT3 really ought to use it to deal with the case of shared-writable mmap encountering ENOSPC before we permit the page to be dirtied. From: Peter Zijlstra <a.p.zijlstra@chello.nl> get_user_pages(.write=1, .force=1) can generate COW hits on read-only shared mappings, this patch traps those as mkpage_write candidates and fails to handle them the old way. Signed-off-by: David Howells <dhowells@redhat.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Joel Becker <Joel.Becker@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:03:43 +00:00
* address space wants to know that the page is about
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
* to become writable
*/
if (vma->vm_ops->page_mkwrite) {
int tmp;
unlock_page(page);
mm: close page_mkwrite races Change page_mkwrite to allow implementations to return with the page locked, and also change it's callers (in page fault paths) to hold the lock until the page is marked dirty. This allows the filesystem to have full control of page dirtying events coming from the VM. Rather than simply hold the page locked over the page_mkwrite call, we call page_mkwrite with the page unlocked and allow callers to return with it locked, so filesystems can avoid LOR conditions with page lock. The problem with the current scheme is this: a filesystem that wants to associate some metadata with a page as long as the page is dirty, will perform this manipulation in its ->page_mkwrite. It currently then must return with the page unlocked and may not hold any other locks (according to existing page_mkwrite convention). In this window, the VM could write out the page, clearing page-dirty. The filesystem has no good way to detect that a dirty pte is about to be attached, so it will happily write out the page, at which point, the filesystem may manipulate the metadata to reflect that the page is no longer dirty. It is not always possible to perform the required metadata manipulation in ->set_page_dirty, because that function cannot block or fail. The filesystem may need to allocate some data structure, for example. And the VM cannot mark the pte dirty before page_mkwrite, because page_mkwrite is allowed to fail, so we must not allow any window where the page could be written to if page_mkwrite does fail. This solution of holding the page locked over the 3 critical operations (page_mkwrite, setting the pte dirty, and finally setting the page dirty) closes out races nicely, preventing page cleaning for writeout being initiated in that window. This provides the filesystem with a strong synchronisation against the VM here. - Sage needs this race closed for ceph filesystem. - Trond for NFS (http://bugzilla.kernel.org/show_bug.cgi?id=12913). - I need it for fsblock. - I suspect other filesystems may need it too (eg. btrfs). - I have converted buffer.c to the new locking. Even simple block allocation under dirty pages might be susceptible to i_size changing under partial page at the end of file (we also have a buffer.c-side problem here, but it cannot be fixed properly without this patch). - Other filesystems (eg. NFS, maybe btrfs) will need to change their page_mkwrite functions themselves. [ This also moves page_mkwrite another step closer to fault, which should eventually allow page_mkwrite to be moved into ->fault, and thus avoiding a filesystem calldown and page lock/unlock cycle in __do_fault. ] [akpm@linux-foundation.org: fix derefs of NULL ->mapping] Cc: Sage Weil <sage@newdream.net> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-30 22:08:16 +00:00
vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
if (unlikely(tmp &
(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
ret = tmp;
mm: close page_mkwrite races Change page_mkwrite to allow implementations to return with the page locked, and also change it's callers (in page fault paths) to hold the lock until the page is marked dirty. This allows the filesystem to have full control of page dirtying events coming from the VM. Rather than simply hold the page locked over the page_mkwrite call, we call page_mkwrite with the page unlocked and allow callers to return with it locked, so filesystems can avoid LOR conditions with page lock. The problem with the current scheme is this: a filesystem that wants to associate some metadata with a page as long as the page is dirty, will perform this manipulation in its ->page_mkwrite. It currently then must return with the page unlocked and may not hold any other locks (according to existing page_mkwrite convention). In this window, the VM could write out the page, clearing page-dirty. The filesystem has no good way to detect that a dirty pte is about to be attached, so it will happily write out the page, at which point, the filesystem may manipulate the metadata to reflect that the page is no longer dirty. It is not always possible to perform the required metadata manipulation in ->set_page_dirty, because that function cannot block or fail. The filesystem may need to allocate some data structure, for example. And the VM cannot mark the pte dirty before page_mkwrite, because page_mkwrite is allowed to fail, so we must not allow any window where the page could be written to if page_mkwrite does fail. This solution of holding the page locked over the 3 critical operations (page_mkwrite, setting the pte dirty, and finally setting the page dirty) closes out races nicely, preventing page cleaning for writeout being initiated in that window. This provides the filesystem with a strong synchronisation against the VM here. - Sage needs this race closed for ceph filesystem. - Trond for NFS (http://bugzilla.kernel.org/show_bug.cgi?id=12913). - I need it for fsblock. - I suspect other filesystems may need it too (eg. btrfs). - I have converted buffer.c to the new locking. Even simple block allocation under dirty pages might be susceptible to i_size changing under partial page at the end of file (we also have a buffer.c-side problem here, but it cannot be fixed properly without this patch). - Other filesystems (eg. NFS, maybe btrfs) will need to change their page_mkwrite functions themselves. [ This also moves page_mkwrite another step closer to fault, which should eventually allow page_mkwrite to be moved into ->fault, and thus avoiding a filesystem calldown and page lock/unlock cycle in __do_fault. ] [akpm@linux-foundation.org: fix derefs of NULL ->mapping] Cc: Sage Weil <sage@newdream.net> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-30 22:08:16 +00:00
goto unwritable_page;
}
mm: close page_mkwrite races Change page_mkwrite to allow implementations to return with the page locked, and also change it's callers (in page fault paths) to hold the lock until the page is marked dirty. This allows the filesystem to have full control of page dirtying events coming from the VM. Rather than simply hold the page locked over the page_mkwrite call, we call page_mkwrite with the page unlocked and allow callers to return with it locked, so filesystems can avoid LOR conditions with page lock. The problem with the current scheme is this: a filesystem that wants to associate some metadata with a page as long as the page is dirty, will perform this manipulation in its ->page_mkwrite. It currently then must return with the page unlocked and may not hold any other locks (according to existing page_mkwrite convention). In this window, the VM could write out the page, clearing page-dirty. The filesystem has no good way to detect that a dirty pte is about to be attached, so it will happily write out the page, at which point, the filesystem may manipulate the metadata to reflect that the page is no longer dirty. It is not always possible to perform the required metadata manipulation in ->set_page_dirty, because that function cannot block or fail. The filesystem may need to allocate some data structure, for example. And the VM cannot mark the pte dirty before page_mkwrite, because page_mkwrite is allowed to fail, so we must not allow any window where the page could be written to if page_mkwrite does fail. This solution of holding the page locked over the 3 critical operations (page_mkwrite, setting the pte dirty, and finally setting the page dirty) closes out races nicely, preventing page cleaning for writeout being initiated in that window. This provides the filesystem with a strong synchronisation against the VM here. - Sage needs this race closed for ceph filesystem. - Trond for NFS (http://bugzilla.kernel.org/show_bug.cgi?id=12913). - I need it for fsblock. - I suspect other filesystems may need it too (eg. btrfs). - I have converted buffer.c to the new locking. Even simple block allocation under dirty pages might be susceptible to i_size changing under partial page at the end of file (we also have a buffer.c-side problem here, but it cannot be fixed properly without this patch). - Other filesystems (eg. NFS, maybe btrfs) will need to change their page_mkwrite functions themselves. [ This also moves page_mkwrite another step closer to fault, which should eventually allow page_mkwrite to be moved into ->fault, and thus avoiding a filesystem calldown and page lock/unlock cycle in __do_fault. ] [akpm@linux-foundation.org: fix derefs of NULL ->mapping] Cc: Sage Weil <sage@newdream.net> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-30 22:08:16 +00:00
if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
lock_page(page);
if (!page->mapping) {
ret = 0; /* retry the fault */
unlock_page(page);
goto unwritable_page;
}
} else
VM_BUG_ON(!PageLocked(page));
page_mkwrite = 1;
[PATCH] add page_mkwrite() vm_operations method Add a new VMA operation to notify a filesystem or other driver about the MMU generating a fault because userspace attempted to write to a page mapped through a read-only PTE. This facility permits the filesystem or driver to: (*) Implement storage allocation/reservation on attempted write, and so to deal with problems such as ENOSPC more gracefully (perhaps by generating SIGBUS). (*) Delay making the page writable until the contents have been written to a backing cache. This is useful for NFS/AFS when using FS-Cache/CacheFS. It permits the filesystem to have some guarantee about the state of the cache. (*) Account and limit number of dirty pages. This is one piece of the puzzle needed to make shared writable mapping work safely in FUSE. Needed by cachefs (Or is it cachefiles? Or fscache? <head spins>). At least four other groups have stated an interest in it or a desire to use the functionality it provides: FUSE, OCFS2, NTFS and JFFS2. Also, things like EXT3 really ought to use it to deal with the case of shared-writable mmap encountering ENOSPC before we permit the page to be dirtied. From: Peter Zijlstra <a.p.zijlstra@chello.nl> get_user_pages(.write=1, .force=1) can generate COW hits on read-only shared mappings, this patch traps those as mkpage_write candidates and fails to handle them the old way. Signed-off-by: David Howells <dhowells@redhat.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Joel Becker <Joel.Becker@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:03:43 +00:00
}
}
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
}
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
/*
* This silly early PAGE_DIRTY setting removes a race
* due to the bad i386 page protection. But it's valid
* for other architectures too.
*
* Note that if FAULT_FLAG_WRITE is set, we either now have
* an exclusive copy of the page, or this is a shared mapping,
* so we can make it writable and dirty to avoid having to
* handle that later.
*/
/* Only go through if we didn't race with anybody else... */
ksm: fix deadlock with munlock in exit_mmap Rawhide users have reported hang at startup when cryptsetup is run: the same problem can be simply reproduced by running a program int main() { mlockall(MCL_CURRENT | MCL_FUTURE); return 0; } The problem is that exit_mmap() applies munlock_vma_pages_all() to clean up VM_LOCKED areas, and its current implementation (stupidly) tries to fault in absent pages, for example where PROT_NONE prevented them being faulted in when mlocking. Whereas the "ksm: fix oom deadlock" patch, knowing there's a race by which KSM might try to fault in pages after exit_mmap() had finally zapped the range, backs out of such faults doing nothing when its ksm_test_exit() notices mm_users 0. So revert that part of "ksm: fix oom deadlock" which moved the ksm_exit() call from before exit_mmap() to the middle of exit_mmap(); and remove those ksm_test_exit() checks from the page fault paths, so allowing the munlocking to proceed without interference. ksm_exit, if there are rmap_items still chained on this mm slot, takes mmap_sem write side: so preventing KSM from working on an mm while exit_mmap runs. And KSM will bail out as soon as it notices that mm_users is already zero, thanks to its internal ksm_test_exit checks. So that when a task is killed by OOM killer or the user, KSM will not indefinitely prevent it from running exit_mmap to release its memory. This does break a part of what "ksm: fix oom deadlock" was trying to achieve. When unmerging KSM (echo 2 >/sys/kernel/mm/ksm), and even when ksmd itself has to cancel a KSM page, it is possible that the first OOM-kill victim would be the KSM process being faulted: then its memory won't be freed until a second victim has been selected (freeing memory for the unmerging fault to complete). But the OOM killer is already liable to kill a second victim once the intended victim's p->mm goes to NULL: so there's not much point in rejecting this KSM patch before fixing that OOM behaviour. It is very much more important to allow KSM users to boot up, than to haggle over an unlikely and poorly supported OOM case. We also intend to fix munlocking to not fault pages: at which point this patch _could_ be reverted; though that would be controversial, so we hope to find a better solution. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Justin M. Forbes <jforbes@redhat.com> Acked-for-now-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Izik Eidus <ieidus@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:02:22 +00:00
if (likely(pte_same(*page_table, orig_pte))) {
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:57 +00:00
flush_icache_page(vma, page);
entry = mk_pte(page, vma->vm_page_prot);
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
if (flags & FAULT_FLAG_WRITE)
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
if (anon) {
swap: cull unevictable pages in fault path In the fault paths that install new anonymous pages, check whether the page is evictable or not using lru_cache_add_active_or_unevictable(). If the page is evictable, just add it to the active lru list [via the pagevec cache], else add it to the unevictable list. This "proactive" culling in the fault path mimics the handling of mlocked pages in Nick Piggin's series to keep mlocked pages off the lru lists. Notes: 1) This patch is optional--e.g., if one is concerned about the additional test in the fault path. We can defer the moving of nonreclaimable pages until when vmscan [shrink_*_list()] encounters them. Vmscan will only need to handle such pages once, but if there are a lot of them it could impact system performance. 2) The 'vma' argument to page_evictable() is require to notice that we're faulting a page into an mlock()ed vma w/o having to scan the page's rmap in the fault path. Culling mlock()ed anon pages is currently the only reason for this patch. 3) We can't cull swap pages in read_swap_cache_async() because the vma argument doesn't necessarily correspond to the swap cache offset passed in by swapin_readahead(). This could [did!] result in mlocking pages in non-VM_LOCKED vmas if [when] we tried to cull in this path. 4) Move set_pte_at() to after where we add page to lru to keep it hidden from other tasks that might walk the page table. We already do it in this order in do_anonymous() page. And, these are COW'd anon pages. Is this safe? [riel@redhat.com: undo an overzealous code cleanup] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 03:26:52 +00:00
inc_mm_counter(mm, anon_rss);
page_add_new_anon_rmap(page, vma, address);
} else {
inc_mm_counter(mm, file_rss);
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:57 +00:00
page_add_file_rmap(page);
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
if (flags & FAULT_FLAG_WRITE) {
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:57 +00:00
dirty_page = page;
[PATCH] mm: tracking shared dirty pages Tracking of dirty pages in shared writeable mmap()s. The idea is simple: write protect clean shared writeable pages, catch the write-fault, make writeable and set dirty. On page write-back clean all the PTE dirty bits and write protect them once again. The implementation is a tad harder, mainly because the default backing_dev_info capabilities were too loosely maintained. Hence it is not enough to test the backing_dev_info for cap_account_dirty. The current heuristic is as follows, a VMA is eligible when: - its shared writeable (vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED) - it is not a 'special' mapping (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) == 0 - the backing_dev_info is cap_account_dirty mapping_cap_account_dirty(vma->vm_file->f_mapping) - f_op->mmap() didn't change the default page protection Page from remap_pfn_range() are explicitly excluded because their COW semantics are already horrid enough (see vm_normal_page() in do_wp_page()) and because they don't have a backing store anyway. mprotect() is taught about the new behaviour as well. However it overrides the last condition. Cleaning the pages on write-back is done with page_mkclean() a new rmap call. It can be called on any page, but is currently only implemented for mapped pages, if the page is found the be of a VMA that accounts dirty pages it will also wrprotect the PTE. Finally, in fs/buffers.c:try_to_free_buffers(); remove clear_page_dirty() from under ->private_lock. This seems to be safe, since ->private_lock is used to serialize access to the buffers, not the page itself. This is needed because clear_page_dirty() will call into page_mkclean() and would thereby violate locking order. [dhowells@redhat.com: Provide a page_mkclean() implementation for NOMMU] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 06:30:57 +00:00
get_page(dirty_page);
}
}
swap: cull unevictable pages in fault path In the fault paths that install new anonymous pages, check whether the page is evictable or not using lru_cache_add_active_or_unevictable(). If the page is evictable, just add it to the active lru list [via the pagevec cache], else add it to the unevictable list. This "proactive" culling in the fault path mimics the handling of mlocked pages in Nick Piggin's series to keep mlocked pages off the lru lists. Notes: 1) This patch is optional--e.g., if one is concerned about the additional test in the fault path. We can defer the moving of nonreclaimable pages until when vmscan [shrink_*_list()] encounters them. Vmscan will only need to handle such pages once, but if there are a lot of them it could impact system performance. 2) The 'vma' argument to page_evictable() is require to notice that we're faulting a page into an mlock()ed vma w/o having to scan the page's rmap in the fault path. Culling mlock()ed anon pages is currently the only reason for this patch. 3) We can't cull swap pages in read_swap_cache_async() because the vma argument doesn't necessarily correspond to the swap cache offset passed in by swapin_readahead(). This could [did!] result in mlocking pages in non-VM_LOCKED vmas if [when] we tried to cull in this path. 4) Move set_pte_at() to after where we add page to lru to keep it hidden from other tasks that might walk the page table. We already do it in this order in do_anonymous() page. And, these are COW'd anon pages. Is this safe? [riel@redhat.com: undo an overzealous code cleanup] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 03:26:52 +00:00
set_pte_at(mm, address, page_table, entry);
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:57 +00:00
/* no need to invalidate: a not-present page won't be cached */
update_mmu_cache(vma, address, entry);
} else {
if (charged)
mem_cgroup_uncharge_page(page);
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:57 +00:00
if (anon)
page_cache_release(page);
else
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
anon = 1; /* no anon but release faulted_page */
}
pte_unmap_unlock(page_table, ptl);
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:57 +00:00
out:
mm: close page_mkwrite races Change page_mkwrite to allow implementations to return with the page locked, and also change it's callers (in page fault paths) to hold the lock until the page is marked dirty. This allows the filesystem to have full control of page dirtying events coming from the VM. Rather than simply hold the page locked over the page_mkwrite call, we call page_mkwrite with the page unlocked and allow callers to return with it locked, so filesystems can avoid LOR conditions with page lock. The problem with the current scheme is this: a filesystem that wants to associate some metadata with a page as long as the page is dirty, will perform this manipulation in its ->page_mkwrite. It currently then must return with the page unlocked and may not hold any other locks (according to existing page_mkwrite convention). In this window, the VM could write out the page, clearing page-dirty. The filesystem has no good way to detect that a dirty pte is about to be attached, so it will happily write out the page, at which point, the filesystem may manipulate the metadata to reflect that the page is no longer dirty. It is not always possible to perform the required metadata manipulation in ->set_page_dirty, because that function cannot block or fail. The filesystem may need to allocate some data structure, for example. And the VM cannot mark the pte dirty before page_mkwrite, because page_mkwrite is allowed to fail, so we must not allow any window where the page could be written to if page_mkwrite does fail. This solution of holding the page locked over the 3 critical operations (page_mkwrite, setting the pte dirty, and finally setting the page dirty) closes out races nicely, preventing page cleaning for writeout being initiated in that window. This provides the filesystem with a strong synchronisation against the VM here. - Sage needs this race closed for ceph filesystem. - Trond for NFS (http://bugzilla.kernel.org/show_bug.cgi?id=12913). - I need it for fsblock. - I suspect other filesystems may need it too (eg. btrfs). - I have converted buffer.c to the new locking. Even simple block allocation under dirty pages might be susceptible to i_size changing under partial page at the end of file (we also have a buffer.c-side problem here, but it cannot be fixed properly without this patch). - Other filesystems (eg. NFS, maybe btrfs) will need to change their page_mkwrite functions themselves. [ This also moves page_mkwrite another step closer to fault, which should eventually allow page_mkwrite to be moved into ->fault, and thus avoiding a filesystem calldown and page lock/unlock cycle in __do_fault. ] [akpm@linux-foundation.org: fix derefs of NULL ->mapping] Cc: Sage Weil <sage@newdream.net> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-30 22:08:16 +00:00
if (dirty_page) {
struct address_space *mapping = page->mapping;
mm: close page_mkwrite races Change page_mkwrite to allow implementations to return with the page locked, and also change it's callers (in page fault paths) to hold the lock until the page is marked dirty. This allows the filesystem to have full control of page dirtying events coming from the VM. Rather than simply hold the page locked over the page_mkwrite call, we call page_mkwrite with the page unlocked and allow callers to return with it locked, so filesystems can avoid LOR conditions with page lock. The problem with the current scheme is this: a filesystem that wants to associate some metadata with a page as long as the page is dirty, will perform this manipulation in its ->page_mkwrite. It currently then must return with the page unlocked and may not hold any other locks (according to existing page_mkwrite convention). In this window, the VM could write out the page, clearing page-dirty. The filesystem has no good way to detect that a dirty pte is about to be attached, so it will happily write out the page, at which point, the filesystem may manipulate the metadata to reflect that the page is no longer dirty. It is not always possible to perform the required metadata manipulation in ->set_page_dirty, because that function cannot block or fail. The filesystem may need to allocate some data structure, for example. And the VM cannot mark the pte dirty before page_mkwrite, because page_mkwrite is allowed to fail, so we must not allow any window where the page could be written to if page_mkwrite does fail. This solution of holding the page locked over the 3 critical operations (page_mkwrite, setting the pte dirty, and finally setting the page dirty) closes out races nicely, preventing page cleaning for writeout being initiated in that window. This provides the filesystem with a strong synchronisation against the VM here. - Sage needs this race closed for ceph filesystem. - Trond for NFS (http://bugzilla.kernel.org/show_bug.cgi?id=12913). - I need it for fsblock. - I suspect other filesystems may need it too (eg. btrfs). - I have converted buffer.c to the new locking. Even simple block allocation under dirty pages might be susceptible to i_size changing under partial page at the end of file (we also have a buffer.c-side problem here, but it cannot be fixed properly without this patch). - Other filesystems (eg. NFS, maybe btrfs) will need to change their page_mkwrite functions themselves. [ This also moves page_mkwrite another step closer to fault, which should eventually allow page_mkwrite to be moved into ->fault, and thus avoiding a filesystem calldown and page lock/unlock cycle in __do_fault. ] [akpm@linux-foundation.org: fix derefs of NULL ->mapping] Cc: Sage Weil <sage@newdream.net> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-30 22:08:16 +00:00
if (set_page_dirty(dirty_page))
page_mkwrite = 1;
unlock_page(dirty_page);
[PATCH] mm: tracking shared dirty pages Tracking of dirty pages in shared writeable mmap()s. The idea is simple: write protect clean shared writeable pages, catch the write-fault, make writeable and set dirty. On page write-back clean all the PTE dirty bits and write protect them once again. The implementation is a tad harder, mainly because the default backing_dev_info capabilities were too loosely maintained. Hence it is not enough to test the backing_dev_info for cap_account_dirty. The current heuristic is as follows, a VMA is eligible when: - its shared writeable (vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED) - it is not a 'special' mapping (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) == 0 - the backing_dev_info is cap_account_dirty mapping_cap_account_dirty(vma->vm_file->f_mapping) - f_op->mmap() didn't change the default page protection Page from remap_pfn_range() are explicitly excluded because their COW semantics are already horrid enough (see vm_normal_page() in do_wp_page()) and because they don't have a backing store anyway. mprotect() is taught about the new behaviour as well. However it overrides the last condition. Cleaning the pages on write-back is done with page_mkclean() a new rmap call. It can be called on any page, but is currently only implemented for mapped pages, if the page is found the be of a VMA that accounts dirty pages it will also wrprotect the PTE. Finally, in fs/buffers.c:try_to_free_buffers(); remove clear_page_dirty() from under ->private_lock. This seems to be safe, since ->private_lock is used to serialize access to the buffers, not the page itself. This is needed because clear_page_dirty() will call into page_mkclean() and would thereby violate locking order. [dhowells@redhat.com: Provide a page_mkclean() implementation for NOMMU] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 06:30:57 +00:00
put_page(dirty_page);
mm: close page_mkwrite races Change page_mkwrite to allow implementations to return with the page locked, and also change it's callers (in page fault paths) to hold the lock until the page is marked dirty. This allows the filesystem to have full control of page dirtying events coming from the VM. Rather than simply hold the page locked over the page_mkwrite call, we call page_mkwrite with the page unlocked and allow callers to return with it locked, so filesystems can avoid LOR conditions with page lock. The problem with the current scheme is this: a filesystem that wants to associate some metadata with a page as long as the page is dirty, will perform this manipulation in its ->page_mkwrite. It currently then must return with the page unlocked and may not hold any other locks (according to existing page_mkwrite convention). In this window, the VM could write out the page, clearing page-dirty. The filesystem has no good way to detect that a dirty pte is about to be attached, so it will happily write out the page, at which point, the filesystem may manipulate the metadata to reflect that the page is no longer dirty. It is not always possible to perform the required metadata manipulation in ->set_page_dirty, because that function cannot block or fail. The filesystem may need to allocate some data structure, for example. And the VM cannot mark the pte dirty before page_mkwrite, because page_mkwrite is allowed to fail, so we must not allow any window where the page could be written to if page_mkwrite does fail. This solution of holding the page locked over the 3 critical operations (page_mkwrite, setting the pte dirty, and finally setting the page dirty) closes out races nicely, preventing page cleaning for writeout being initiated in that window. This provides the filesystem with a strong synchronisation against the VM here. - Sage needs this race closed for ceph filesystem. - Trond for NFS (http://bugzilla.kernel.org/show_bug.cgi?id=12913). - I need it for fsblock. - I suspect other filesystems may need it too (eg. btrfs). - I have converted buffer.c to the new locking. Even simple block allocation under dirty pages might be susceptible to i_size changing under partial page at the end of file (we also have a buffer.c-side problem here, but it cannot be fixed properly without this patch). - Other filesystems (eg. NFS, maybe btrfs) will need to change their page_mkwrite functions themselves. [ This also moves page_mkwrite another step closer to fault, which should eventually allow page_mkwrite to be moved into ->fault, and thus avoiding a filesystem calldown and page lock/unlock cycle in __do_fault. ] [akpm@linux-foundation.org: fix derefs of NULL ->mapping] Cc: Sage Weil <sage@newdream.net> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-30 22:08:16 +00:00
if (page_mkwrite && mapping) {
/*
* Some device drivers do not set page.mapping but still
* dirty their pages
*/
balance_dirty_pages_ratelimited(mapping);
}
/* file_update_time outside page_lock */
if (vma->vm_file)
file_update_time(vma->vm_file);
} else {
unlock_page(vmf.page);
if (anon)
page_cache_release(vmf.page);
[PATCH] mm: tracking shared dirty pages Tracking of dirty pages in shared writeable mmap()s. The idea is simple: write protect clean shared writeable pages, catch the write-fault, make writeable and set dirty. On page write-back clean all the PTE dirty bits and write protect them once again. The implementation is a tad harder, mainly because the default backing_dev_info capabilities were too loosely maintained. Hence it is not enough to test the backing_dev_info for cap_account_dirty. The current heuristic is as follows, a VMA is eligible when: - its shared writeable (vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED) - it is not a 'special' mapping (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) == 0 - the backing_dev_info is cap_account_dirty mapping_cap_account_dirty(vma->vm_file->f_mapping) - f_op->mmap() didn't change the default page protection Page from remap_pfn_range() are explicitly excluded because their COW semantics are already horrid enough (see vm_normal_page() in do_wp_page()) and because they don't have a backing store anyway. mprotect() is taught about the new behaviour as well. However it overrides the last condition. Cleaning the pages on write-back is done with page_mkclean() a new rmap call. It can be called on any page, but is currently only implemented for mapped pages, if the page is found the be of a VMA that accounts dirty pages it will also wrprotect the PTE. Finally, in fs/buffers.c:try_to_free_buffers(); remove clear_page_dirty() from under ->private_lock. This seems to be safe, since ->private_lock is used to serialize access to the buffers, not the page itself. This is needed because clear_page_dirty() will call into page_mkclean() and would thereby violate locking order. [dhowells@redhat.com: Provide a page_mkclean() implementation for NOMMU] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 06:30:57 +00:00
}
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:57 +00:00
mm: fault feedback #2 This patch completes Linus's wish that the fault return codes be made into bit flags, which I agree makes everything nicer. This requires requires all handle_mm_fault callers to be modified (possibly the modifications should go further and do things like fault accounting in handle_mm_fault -- however that would be for another patch). [akpm@linux-foundation.org: fix alpha build] [akpm@linux-foundation.org: fix s390 build] [akpm@linux-foundation.org: fix sparc build] [akpm@linux-foundation.org: fix sparc64 build] [akpm@linux-foundation.org: fix ia64 build] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Bryan Wu <bryan.wu@analog.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Matthew Wilcox <willy@debian.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Still apparently needs some ARM and PPC loving - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:47:05 +00:00
return ret;
mm: close page_mkwrite races Change page_mkwrite to allow implementations to return with the page locked, and also change it's callers (in page fault paths) to hold the lock until the page is marked dirty. This allows the filesystem to have full control of page dirtying events coming from the VM. Rather than simply hold the page locked over the page_mkwrite call, we call page_mkwrite with the page unlocked and allow callers to return with it locked, so filesystems can avoid LOR conditions with page lock. The problem with the current scheme is this: a filesystem that wants to associate some metadata with a page as long as the page is dirty, will perform this manipulation in its ->page_mkwrite. It currently then must return with the page unlocked and may not hold any other locks (according to existing page_mkwrite convention). In this window, the VM could write out the page, clearing page-dirty. The filesystem has no good way to detect that a dirty pte is about to be attached, so it will happily write out the page, at which point, the filesystem may manipulate the metadata to reflect that the page is no longer dirty. It is not always possible to perform the required metadata manipulation in ->set_page_dirty, because that function cannot block or fail. The filesystem may need to allocate some data structure, for example. And the VM cannot mark the pte dirty before page_mkwrite, because page_mkwrite is allowed to fail, so we must not allow any window where the page could be written to if page_mkwrite does fail. This solution of holding the page locked over the 3 critical operations (page_mkwrite, setting the pte dirty, and finally setting the page dirty) closes out races nicely, preventing page cleaning for writeout being initiated in that window. This provides the filesystem with a strong synchronisation against the VM here. - Sage needs this race closed for ceph filesystem. - Trond for NFS (http://bugzilla.kernel.org/show_bug.cgi?id=12913). - I need it for fsblock. - I suspect other filesystems may need it too (eg. btrfs). - I have converted buffer.c to the new locking. Even simple block allocation under dirty pages might be susceptible to i_size changing under partial page at the end of file (we also have a buffer.c-side problem here, but it cannot be fixed properly without this patch). - Other filesystems (eg. NFS, maybe btrfs) will need to change their page_mkwrite functions themselves. [ This also moves page_mkwrite another step closer to fault, which should eventually allow page_mkwrite to be moved into ->fault, and thus avoiding a filesystem calldown and page lock/unlock cycle in __do_fault. ] [akpm@linux-foundation.org: fix derefs of NULL ->mapping] Cc: Sage Weil <sage@newdream.net> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-30 22:08:16 +00:00
unwritable_page:
page_cache_release(page);
return ret;
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
}
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:57 +00:00
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pte_t *page_table, pmd_t *pmd,
unsigned int flags, pte_t orig_pte)
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
{
pgoff_t pgoff = (((address & PAGE_MASK)
- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
pte_unmap(page_table);
return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
}
/*
* Fault of a previously existing named mapping. Repopulate the pte
* from the encoded file_pte if possible. This enables swappable
* nonlinear vmas.
*
* We enter with non-exclusive mmap_sem (to exclude vma changes,
* but allow concurrent faults), and pte mapped but not yet locked.
* We return with mmap_sem still held, but pte unmapped and unlocked.
*/
static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pte_t *page_table, pmd_t *pmd,
unsigned int flags, pte_t orig_pte)
{
pgoff_t pgoff;
flags |= FAULT_FLAG_NONLINEAR;
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 01:16:40 +00:00
if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
mm: fault feedback #2 This patch completes Linus's wish that the fault return codes be made into bit flags, which I agree makes everything nicer. This requires requires all handle_mm_fault callers to be modified (possibly the modifications should go further and do things like fault accounting in handle_mm_fault -- however that would be for another patch). [akpm@linux-foundation.org: fix alpha build] [akpm@linux-foundation.org: fix s390 build] [akpm@linux-foundation.org: fix sparc build] [akpm@linux-foundation.org: fix sparc64 build] [akpm@linux-foundation.org: fix ia64 build] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Bryan Wu <bryan.wu@analog.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Matthew Wilcox <willy@debian.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Still apparently needs some ARM and PPC loving - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:47:05 +00:00
return 0;
if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
/*
* Page table corrupted: show pte and kill process.
*/
badpage: replace page_remove_rmap Eeek and BUG Now that bad pages are kept out of circulation, there is no need for the infamous page_remove_rmap() BUG() - once that page is freed, its negative mapcount will issue a "Bad page state" message and the page won't be freed. Removing the BUG() allows more info, on subsequent pages, to be gathered. We do have more info about the page at this point than bad_page() can know - notably, what the pmd is, which might pinpoint something like low 64kB corruption - but page_remove_rmap() isn't given the address to find that. In practice, there is only one call to page_remove_rmap() which has ever reported anything, that from zap_pte_range() (usually on exit, sometimes on munmap). It has all the info, so remove page_remove_rmap()'s "Eeek" message and leave it all to zap_pte_range(). mm/memory.c already has a hardly used print_bad_pte() function, showing some of the appropriate info: extend it to show what we want for the rmap case: pte info, page info (when there is a page) and vma info to compare. zap_pte_range() already knows the pmd, but print_bad_pte() is easier to use if it works that out for itself. Some of this info is also shown in bad_page()'s "Bad page state" message. Keep them separate, but adjust them to match each other as far as possible. Say "Bad page map" in print_bad_pte(), and add a TAINT_BAD_PAGE there too. print_bad_pte() show current->comm unconditionally (though it should get repeated in the usually irrelevant stack trace): sorry, I misled Nick Piggin to make it conditional on vm_mm == current->mm, but current->mm is already NULL in the exit case. Usually current->comm is good, though exceptionally it may not be that of the mm (when "swapoff" for example). Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:40:08 +00:00
print_bad_pte(vma, address, orig_pte, NULL);
return VM_FAULT_OOM;
}
pgoff = pte_to_pgoff(orig_pte);
return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
}
/*
* These routines also need to handle stuff like marking pages dirty
* and/or accessed for architectures that don't do it in hardware (most
* RISC architectures). The early dirtying is also good on the i386.
*
* There is also a hook called "update_mmu_cache()" that architectures
* with external mmu caches can use to update those (ie the Sparc or
* PowerPC hashed page tables that act as extended TLBs).
*
* We enter with non-exclusive mmap_sem (to exclude vma changes,
* but allow concurrent faults), and pte mapped but not yet locked.
* We return with mmap_sem still held, but pte unmapped and unlocked.
*/
static inline int handle_pte_fault(struct mm_struct *mm,
struct vm_area_struct *vma, unsigned long address,
pte_t *pte, pmd_t *pmd, unsigned int flags)
{
pte_t entry;
spinlock_t *ptl;
entry = *pte;
if (!pte_present(entry)) {
if (pte_none(entry)) {
if (vma->vm_ops) {
if (likely(vma->vm_ops->fault))
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
return do_linear_fault(mm, vma, address,
pte, pmd, flags, entry);
}
return do_anonymous_page(mm, vma, address,
pte, pmd, flags);
}
if (pte_file(entry))
return do_nonlinear_fault(mm, vma, address,
pte, pmd, flags, entry);
return do_swap_page(mm, vma, address,
pte, pmd, flags, entry);
}
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 01:16:40 +00:00
ptl = pte_lockptr(mm, pmd);
spin_lock(ptl);
if (unlikely(!pte_same(*pte, entry)))
goto unlock;
if (flags & FAULT_FLAG_WRITE) {
if (!pte_write(entry))
return do_wp_page(mm, vma, address,
pte, pmd, ptl, entry);
entry = pte_mkdirty(entry);
}
entry = pte_mkyoung(entry);
if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
update_mmu_cache(vma, address, entry);
} else {
/*
* This is needed only for protection faults but the arch code
* is not yet telling us if this is a protection fault or not.
* This still avoids useless tlb flushes for .text page faults
* with threads.
*/
if (flags & FAULT_FLAG_WRITE)
flush_tlb_page(vma, address);
}
unlock:
pte_unmap_unlock(pte, ptl);
mm: fault feedback #2 This patch completes Linus's wish that the fault return codes be made into bit flags, which I agree makes everything nicer. This requires requires all handle_mm_fault callers to be modified (possibly the modifications should go further and do things like fault accounting in handle_mm_fault -- however that would be for another patch). [akpm@linux-foundation.org: fix alpha build] [akpm@linux-foundation.org: fix s390 build] [akpm@linux-foundation.org: fix sparc build] [akpm@linux-foundation.org: fix sparc64 build] [akpm@linux-foundation.org: fix ia64 build] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Bryan Wu <bryan.wu@analog.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Matthew Wilcox <willy@debian.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Still apparently needs some ARM and PPC loving - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:47:05 +00:00
return 0;
}
/*
* By the time we get here, we already hold the mm semaphore
*/
mm: fault feedback #2 This patch completes Linus's wish that the fault return codes be made into bit flags, which I agree makes everything nicer. This requires requires all handle_mm_fault callers to be modified (possibly the modifications should go further and do things like fault accounting in handle_mm_fault -- however that would be for another patch). [akpm@linux-foundation.org: fix alpha build] [akpm@linux-foundation.org: fix s390 build] [akpm@linux-foundation.org: fix sparc build] [akpm@linux-foundation.org: fix sparc64 build] [akpm@linux-foundation.org: fix ia64 build] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Bryan Wu <bryan.wu@analog.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Matthew Wilcox <willy@debian.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Still apparently needs some ARM and PPC loving - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:47:05 +00:00
int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, unsigned int flags)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
__set_current_state(TASK_RUNNING);
[PATCH] Light weight event counters The remaining counters in page_state after the zoned VM counter patches have been applied are all just for show in /proc/vmstat. They have no essential function for the VM. We use a simple increment of per cpu variables. In order to avoid the most severe races we disable preempt. Preempt does not prevent the race between an increment and an interrupt handler incrementing the same statistics counter. However, that race is exceedingly rare, we may only loose one increment or so and there is no requirement (at least not in kernel) that the vm event counters have to be accurate. In the non preempt case this results in a simple increment for each counter. For many architectures this will be reduced by the compiler to a single instruction. This single instruction is atomic for i386 and x86_64. And therefore even the rare race condition in an interrupt is avoided for both architectures in most cases. The patchset also adds an off switch for embedded systems that allows a building of linux kernels without these counters. The implementation of these counters is through inline code that hopefully results in only a single instruction increment instruction being emitted (i386, x86_64) or in the increment being hidden though instruction concurrency (EPIC architectures such as ia64 can get that done). Benefits: - VM event counter operations usually reduce to a single inline instruction on i386 and x86_64. - No interrupt disable, only preempt disable for the preempt case. Preempt disable can also be avoided by moving the counter into a spinlock. - Handling is similar to zoned VM counters. - Simple and easily extendable. - Can be omitted to reduce memory use for embedded use. References: RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=113512330605497&w=2 RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=114988082814934&w=2 local_t http://marc.theaimsgroup.com/?l=linux-kernel&m=114991748606690&w=2 V2 http://marc.theaimsgroup.com/?t=115014808400007&r=1&w=2 V3 http://marc.theaimsgroup.com/?l=linux-kernel&m=115024767022346&w=2 V4 http://marc.theaimsgroup.com/?l=linux-kernel&m=115047968808926&w=2 Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 08:55:45 +00:00
count_vm_event(PGFAULT);
if (unlikely(is_vm_hugetlb_page(vma)))
return hugetlb_fault(mm, vma, address, flags);
pgd = pgd_offset(mm, address);
pud = pud_alloc(mm, pgd, address);
if (!pud)
return VM_FAULT_OOM;
pmd = pmd_alloc(mm, pud, address);
if (!pmd)
return VM_FAULT_OOM;
pte = pte_alloc_map(mm, pmd, address);
if (!pte)
return VM_FAULT_OOM;
return handle_pte_fault(mm, vma, address, pte, pmd, flags);
}
#ifndef __PAGETABLE_PUD_FOLDED
/*
* Allocate page upper directory.
[PATCH] mm: init_mm without ptlock First step in pushing down the page_table_lock. init_mm.page_table_lock has been used throughout the architectures (usually for ioremap): not to serialize kernel address space allocation (that's usually vmlist_lock), but because pud_alloc,pmd_alloc,pte_alloc_kernel expect caller holds it. Reverse that: don't lock or unlock init_mm.page_table_lock in any of the architectures; instead rely on pud_alloc,pmd_alloc,pte_alloc_kernel to take and drop it when allocating a new one, to check lest a racing task already did. Similarly no page_table_lock in vmalloc's map_vm_area. Some temporary ugliness in __pud_alloc and __pmd_alloc: since they also handle user mms, which are converted only by a later patch, for now they have to lock differently according to whether or not it's init_mm. If sources get muddled, there's a danger that an arch source taking init_mm.page_table_lock will be mixed with common source also taking it (or neither take it). So break the rules and make another change, which should break the build for such a mismatch: remove the redundant mm arg from pte_alloc_kernel (ppc64 scrapped its distinct ioremap_mm in 2.6.13). Exceptions: arm26 used pte_alloc_kernel on user mm, now pte_alloc_map; ia64 used pte_alloc_map on init_mm, now pte_alloc_kernel; parisc had bad args to pmd_alloc and pte_alloc_kernel in unused USE_HPPA_IOREMAP code; ppc64 map_io_page forgot to unlock on failure; ppc mmu_mapin_ram and ppc64 im_free took page_table_lock for no good reason. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 01:16:21 +00:00
* We've already handled the fast-path in-line.
*/
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
{
pud_t *new = pud_alloc_one(mm, address);
if (!new)
return -ENOMEM;
fix SMP data race in pagetable setup vs walking There is a possible data race in the page table walking code. After the split ptlock patches, it actually seems to have been introduced to the core code, but even before that I think it would have impacted some architectures (powerpc and sparc64, at least, walk the page tables without taking locks eg. see find_linux_pte()). The race is as follows: The pte page is allocated, zeroed, and its struct page gets its spinlock initialized. The mm-wide ptl is then taken, and then the pte page is inserted into the pagetables. At this point, the spinlock is not guaranteed to have ordered the previous stores to initialize the pte page with the subsequent store to put it in the page tables. So another Linux page table walker might be walking down (without any locks, because we have split-leaf-ptls), and find that new pte we've inserted. It might try to take the spinlock before the store from the other CPU initializes it. And subsequently it might read a pte_t out before stores from the other CPU have cleared the memory. There are also similar races in higher levels of the page tables. They obviously don't involve the spinlock, but could see uninitialized memory. Arch code and hardware pagetable walkers that walk the pagetables without locks could see similar uninitialized memory problems, regardless of whether split ptes are enabled or not. I prefer to put the barriers in core code, because that's where the higher level logic happens, but the page table accessors are per-arch, and open-coding them everywhere I don't think is an option. I'll put the read-side barriers in alpha arch code for now (other architectures perform data-dependent loads in order). Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-14 04:37:36 +00:00
smp_wmb(); /* See comment in __pte_alloc */
[PATCH] mm: init_mm without ptlock First step in pushing down the page_table_lock. init_mm.page_table_lock has been used throughout the architectures (usually for ioremap): not to serialize kernel address space allocation (that's usually vmlist_lock), but because pud_alloc,pmd_alloc,pte_alloc_kernel expect caller holds it. Reverse that: don't lock or unlock init_mm.page_table_lock in any of the architectures; instead rely on pud_alloc,pmd_alloc,pte_alloc_kernel to take and drop it when allocating a new one, to check lest a racing task already did. Similarly no page_table_lock in vmalloc's map_vm_area. Some temporary ugliness in __pud_alloc and __pmd_alloc: since they also handle user mms, which are converted only by a later patch, for now they have to lock differently according to whether or not it's init_mm. If sources get muddled, there's a danger that an arch source taking init_mm.page_table_lock will be mixed with common source also taking it (or neither take it). So break the rules and make another change, which should break the build for such a mismatch: remove the redundant mm arg from pte_alloc_kernel (ppc64 scrapped its distinct ioremap_mm in 2.6.13). Exceptions: arm26 used pte_alloc_kernel on user mm, now pte_alloc_map; ia64 used pte_alloc_map on init_mm, now pte_alloc_kernel; parisc had bad args to pmd_alloc and pte_alloc_kernel in unused USE_HPPA_IOREMAP code; ppc64 map_io_page forgot to unlock on failure; ppc mmu_mapin_ram and ppc64 im_free took page_table_lock for no good reason. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 01:16:21 +00:00
spin_lock(&mm->page_table_lock);
if (pgd_present(*pgd)) /* Another has populated it */
pud_free(mm, new);
else
pgd_populate(mm, pgd, new);
spin_unlock(&mm->page_table_lock);
return 0;
}
#endif /* __PAGETABLE_PUD_FOLDED */
#ifndef __PAGETABLE_PMD_FOLDED
/*
* Allocate page middle directory.
[PATCH] mm: init_mm without ptlock First step in pushing down the page_table_lock. init_mm.page_table_lock has been used throughout the architectures (usually for ioremap): not to serialize kernel address space allocation (that's usually vmlist_lock), but because pud_alloc,pmd_alloc,pte_alloc_kernel expect caller holds it. Reverse that: don't lock or unlock init_mm.page_table_lock in any of the architectures; instead rely on pud_alloc,pmd_alloc,pte_alloc_kernel to take and drop it when allocating a new one, to check lest a racing task already did. Similarly no page_table_lock in vmalloc's map_vm_area. Some temporary ugliness in __pud_alloc and __pmd_alloc: since they also handle user mms, which are converted only by a later patch, for now they have to lock differently according to whether or not it's init_mm. If sources get muddled, there's a danger that an arch source taking init_mm.page_table_lock will be mixed with common source also taking it (or neither take it). So break the rules and make another change, which should break the build for such a mismatch: remove the redundant mm arg from pte_alloc_kernel (ppc64 scrapped its distinct ioremap_mm in 2.6.13). Exceptions: arm26 used pte_alloc_kernel on user mm, now pte_alloc_map; ia64 used pte_alloc_map on init_mm, now pte_alloc_kernel; parisc had bad args to pmd_alloc and pte_alloc_kernel in unused USE_HPPA_IOREMAP code; ppc64 map_io_page forgot to unlock on failure; ppc mmu_mapin_ram and ppc64 im_free took page_table_lock for no good reason. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 01:16:21 +00:00
* We've already handled the fast-path in-line.
*/
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
{
pmd_t *new = pmd_alloc_one(mm, address);
if (!new)
return -ENOMEM;
fix SMP data race in pagetable setup vs walking There is a possible data race in the page table walking code. After the split ptlock patches, it actually seems to have been introduced to the core code, but even before that I think it would have impacted some architectures (powerpc and sparc64, at least, walk the page tables without taking locks eg. see find_linux_pte()). The race is as follows: The pte page is allocated, zeroed, and its struct page gets its spinlock initialized. The mm-wide ptl is then taken, and then the pte page is inserted into the pagetables. At this point, the spinlock is not guaranteed to have ordered the previous stores to initialize the pte page with the subsequent store to put it in the page tables. So another Linux page table walker might be walking down (without any locks, because we have split-leaf-ptls), and find that new pte we've inserted. It might try to take the spinlock before the store from the other CPU initializes it. And subsequently it might read a pte_t out before stores from the other CPU have cleared the memory. There are also similar races in higher levels of the page tables. They obviously don't involve the spinlock, but could see uninitialized memory. Arch code and hardware pagetable walkers that walk the pagetables without locks could see similar uninitialized memory problems, regardless of whether split ptes are enabled or not. I prefer to put the barriers in core code, because that's where the higher level logic happens, but the page table accessors are per-arch, and open-coding them everywhere I don't think is an option. I'll put the read-side barriers in alpha arch code for now (other architectures perform data-dependent loads in order). Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-14 04:37:36 +00:00
smp_wmb(); /* See comment in __pte_alloc */
[PATCH] mm: init_mm without ptlock First step in pushing down the page_table_lock. init_mm.page_table_lock has been used throughout the architectures (usually for ioremap): not to serialize kernel address space allocation (that's usually vmlist_lock), but because pud_alloc,pmd_alloc,pte_alloc_kernel expect caller holds it. Reverse that: don't lock or unlock init_mm.page_table_lock in any of the architectures; instead rely on pud_alloc,pmd_alloc,pte_alloc_kernel to take and drop it when allocating a new one, to check lest a racing task already did. Similarly no page_table_lock in vmalloc's map_vm_area. Some temporary ugliness in __pud_alloc and __pmd_alloc: since they also handle user mms, which are converted only by a later patch, for now they have to lock differently according to whether or not it's init_mm. If sources get muddled, there's a danger that an arch source taking init_mm.page_table_lock will be mixed with common source also taking it (or neither take it). So break the rules and make another change, which should break the build for such a mismatch: remove the redundant mm arg from pte_alloc_kernel (ppc64 scrapped its distinct ioremap_mm in 2.6.13). Exceptions: arm26 used pte_alloc_kernel on user mm, now pte_alloc_map; ia64 used pte_alloc_map on init_mm, now pte_alloc_kernel; parisc had bad args to pmd_alloc and pte_alloc_kernel in unused USE_HPPA_IOREMAP code; ppc64 map_io_page forgot to unlock on failure; ppc mmu_mapin_ram and ppc64 im_free took page_table_lock for no good reason. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 01:16:21 +00:00
spin_lock(&mm->page_table_lock);
#ifndef __ARCH_HAS_4LEVEL_HACK
if (pud_present(*pud)) /* Another has populated it */
pmd_free(mm, new);
else
pud_populate(mm, pud, new);
#else
if (pgd_present(*pud)) /* Another has populated it */
pmd_free(mm, new);
else
pgd_populate(mm, pud, new);
#endif /* __ARCH_HAS_4LEVEL_HACK */
spin_unlock(&mm->page_table_lock);
return 0;
[PATCH] Workaround for gcc 2.96 (undefined references) LD .tmp_vmlinux1 mm/built-in.o(.text+0x100d6): In function `copy_page_range': : undefined reference to `__pud_alloc' mm/built-in.o(.text+0x1010b): In function `copy_page_range': : undefined reference to `__pmd_alloc' mm/built-in.o(.text+0x11ef4): In function `__handle_mm_fault': : undefined reference to `__pud_alloc' fs/built-in.o(.text+0xc930): In function `install_arg_page': : undefined reference to `__pud_alloc' make: *** [.tmp_vmlinux1] Error 1 Those missing references in mm/memory.c arise from this code in include/linux/mm.h, combined with the fact that __PGTABLE_PMD_FOLDED and __PGTABLE_PUD_FOLDED are both set and __ARCH_HAS_4LEVEL_HACK is not: /* * The following ifdef needed to get the 4level-fixup.h header to work. * Remove it when 4level-fixup.h has been removed. */ #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? NULL: pud_offset(pgd, address); } static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? NULL: pmd_offset(pud, address); } #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ With my configuration the pgd_none and pud_none routines are inlines returning a constant 0. Apparently the old compiler avoids generating calls to __pud_alloc and __pmd_alloc but still lists them as undefined references in the module's symbol table. I don't know which change caused this problem. I think it was added somewhere between 2.6.14 and 2.6.15-rc1, because I remember building several 2.6.14-rc kernels without difficulty. However I can't point to an individual culprit. Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-28 21:43:44 +00:00
}
#endif /* __PAGETABLE_PMD_FOLDED */
int make_pages_present(unsigned long addr, unsigned long end)
{
int ret, len, write;
struct vm_area_struct * vma;
vma = find_vma(current->mm, addr);
if (!vma)
mlock() fix return values Halesh says: Please find the below testcase provide to test mlock. Test Case : =========================== #include <sys/resource.h> #include <stdio.h> #include <sys/stat.h> #include <sys/types.h> #include <unistd.h> #include <sys/mman.h> #include <fcntl.h> #include <errno.h> #include <stdlib.h> int main(void) { int fd,ret, i = 0; char *addr, *addr1 = NULL; unsigned int page_size; struct rlimit rlim; if (0 != geteuid()) { printf("Execute this pgm as root\n"); exit(1); } /* create a file */ if ((fd = open("mmap_test.c",O_RDWR|O_CREAT,0755)) == -1) { printf("cant create test file\n"); exit(1); } page_size = sysconf(_SC_PAGE_SIZE); /* set the MEMLOCK limit */ rlim.rlim_cur = 2000; rlim.rlim_max = 2000; if ((ret = setrlimit(RLIMIT_MEMLOCK,&rlim)) != 0) { printf("Cant change limit values\n"); exit(1); } addr = 0; while (1) { /* map a page into memory each time*/ if ((addr = (char *) mmap(addr,page_size, PROT_READ | PROT_WRITE,MAP_SHARED,fd,0)) == MAP_FAILED) { printf("cant do mmap on file\n"); exit(1); } if (0 == i) addr1 = addr; i++; errno = 0; /* lock the mapped memory pagewise*/ if ((ret = mlock((char *)addr, 1500)) == -1) { printf("errno value is %d\n", errno); printf("cant lock maped region\n"); exit(1); } addr = addr + page_size; } } ====================================================== This testcase results in an mlock() failure with errno 14 that is EFAULT, but it has nowhere been specified that mlock() will return EFAULT. When I tested the same on older kernels like 2.6.18, I got the correct result i.e errno 12 (ENOMEM). I think in source code mlock(2), setting errno ENOMEM has been missed in do_mlock() , on mlock_fixup() failure. SUSv3 requires the following behavior frmo mlock(2). [ENOMEM] Some or all of the address range specified by the addr and len arguments does not correspond to valid mapped pages in the address space of the process. [EAGAIN] Some or all of the memory identified by the operation could not be locked when the call was made. This rule isn't so nice and slighly strange. but many people think POSIX/SUS compliance is important. Reported-by: Halesh Sadashiv <halesh.sadashiv@ap.sony.com> Tested-by: Halesh Sadashiv <halesh.sadashiv@ap.sony.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: <stable@kernel.org> [2.6.25.x, 2.6.26.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-08-04 20:41:14 +00:00
return -ENOMEM;
write = (vma->vm_flags & VM_WRITE) != 0;
BUG_ON(addr >= end);
BUG_ON(end > vma->vm_end);
len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
ret = get_user_pages(current, current->mm, addr,
len, write, 0, NULL, NULL);
if (ret < 0)
return ret;
return ret == len ? 0 : -EFAULT;
}
#if !defined(__HAVE_ARCH_GATE_AREA)
#if defined(AT_SYSINFO_EHDR)
static struct vm_area_struct gate_vma;
static int __init gate_vma_init(void)
{
gate_vma.vm_mm = NULL;
gate_vma.vm_start = FIXADDR_USER_START;
gate_vma.vm_end = FIXADDR_USER_END;
gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
gate_vma.vm_page_prot = __P101;
/*
* Make sure the vDSO gets into every core dump.
* Dumping its contents makes post-mortem fully interpretable later
* without matching up the same kernel and hardware config to see
* what PC values meant.
*/
gate_vma.vm_flags |= VM_ALWAYSDUMP;
return 0;
}
__initcall(gate_vma_init);
#endif
struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
{
#ifdef AT_SYSINFO_EHDR
return &gate_vma;
#else
return NULL;
#endif
}
int in_gate_area_no_task(unsigned long addr)
{
#ifdef AT_SYSINFO_EHDR
if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
return 1;
#endif
return 0;
}
#endif /* __HAVE_ARCH_GATE_AREA */
static int follow_pte(struct mm_struct *mm, unsigned long address,
pte_t **ptepp, spinlock_t **ptlp)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *ptep;
pgd = pgd_offset(mm, address);
if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
goto out;
pud = pud_offset(pgd, address);
if (pud_none(*pud) || unlikely(pud_bad(*pud)))
goto out;
pmd = pmd_offset(pud, address);
if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
goto out;
/* We cannot handle huge page PFN maps. Luckily they don't exist. */
if (pmd_huge(*pmd))
goto out;
ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
if (!ptep)
goto out;
if (!pte_present(*ptep))
goto unlock;
*ptepp = ptep;
return 0;
unlock:
pte_unmap_unlock(ptep, *ptlp);
out:
return -EINVAL;
}
/**
* follow_pfn - look up PFN at a user virtual address
* @vma: memory mapping
* @address: user virtual address
* @pfn: location to store found PFN
*
* Only IO mappings and raw PFN mappings are allowed.
*
* Returns zero and the pfn at @pfn on success, -ve otherwise.
*/
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
unsigned long *pfn)
{
int ret = -EINVAL;
spinlock_t *ptl;
pte_t *ptep;
if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
return ret;
ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
if (ret)
return ret;
*pfn = pte_pfn(*ptep);
pte_unmap_unlock(ptep, ptl);
return 0;
}
EXPORT_SYMBOL(follow_pfn);
#ifdef CONFIG_HAVE_IOREMAP_PROT
int follow_phys(struct vm_area_struct *vma,
unsigned long address, unsigned int flags,
unsigned long *prot, resource_size_t *phys)
{
int ret = -EINVAL;
pte_t *ptep, pte;
spinlock_t *ptl;
if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
goto out;
if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
goto out;
pte = *ptep;
if ((flags & FOLL_WRITE) && !pte_write(pte))
goto unlock;
*prot = pgprot_val(pte_pgprot(pte));
*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
ret = 0;
unlock:
pte_unmap_unlock(ptep, ptl);
out:
return ret;
}
int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
void *buf, int len, int write)
{
resource_size_t phys_addr;
unsigned long prot = 0;
void __iomem *maddr;
int offset = addr & (PAGE_SIZE-1);
if (follow_phys(vma, addr, write, &prot, &phys_addr))
return -EINVAL;
maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
if (write)
memcpy_toio(maddr + offset, buf, len);
else
memcpy_fromio(buf, maddr + offset, len);
iounmap(maddr);
return len;
}
#endif
/*
* Access another process' address space.
* Source/target buffer must be kernel space,
* Do not walk the page table directly, use get_user_pages
*/
int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
{
struct mm_struct *mm;
struct vm_area_struct *vma;
void *old_buf = buf;
mm = get_task_mm(tsk);
if (!mm)
return 0;
down_read(&mm->mmap_sem);
/* ignore errors, just check how much was successfully transferred */
while (len) {
int bytes, ret, offset;
void *maddr;
struct page *page = NULL;
ret = get_user_pages(tsk, mm, addr, 1,
write, 1, &page, &vma);
if (ret <= 0) {
/*
* Check if this is a VM_IO | VM_PFNMAP VMA, which
* we can access using slightly different code.
*/
#ifdef CONFIG_HAVE_IOREMAP_PROT
vma = find_vma(mm, addr);
if (!vma)
break;
if (vma->vm_ops && vma->vm_ops->access)
ret = vma->vm_ops->access(vma, addr, buf,
len, write);
if (ret <= 0)
#endif
break;
bytes = ret;
} else {
bytes = len;
offset = addr & (PAGE_SIZE-1);
if (bytes > PAGE_SIZE-offset)
bytes = PAGE_SIZE-offset;
maddr = kmap(page);
if (write) {
copy_to_user_page(vma, page, addr,
maddr + offset, buf, bytes);
set_page_dirty_lock(page);
} else {
copy_from_user_page(vma, page, addr,
buf, maddr + offset, bytes);
}
kunmap(page);
page_cache_release(page);
}
len -= bytes;
buf += bytes;
addr += bytes;
}
up_read(&mm->mmap_sem);
mmput(mm);
return buf - old_buf;
}
/*
* Print the name of a VMA.
*/
void print_vma_addr(char *prefix, unsigned long ip)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
x86: fix "BUG: sleeping function called from invalid context" in print_vma_addr() Jiri Kosina reported the following deadlock scenario with show_unhandled_signals enabled: [ 68.379022] gnome-settings-[2941] trap int3 ip:3d2c840f34 sp:7fff36f5d100 error:0<3>BUG: sleeping function called from invalid context at kernel/rwsem.c:21 [ 68.379039] in_atomic():1, irqs_disabled():0 [ 68.379044] no locks held by gnome-settings-/2941. [ 68.379050] Pid: 2941, comm: gnome-settings- Not tainted 2.6.25-rc1 #30 [ 68.379054] [ 68.379056] Call Trace: [ 68.379061] <#DB> [<ffffffff81064883>] ? __debug_show_held_locks+0x13/0x30 [ 68.379109] [<ffffffff81036765>] __might_sleep+0xe5/0x110 [ 68.379123] [<ffffffff812f2240>] down_read+0x20/0x70 [ 68.379137] [<ffffffff8109cdca>] print_vma_addr+0x3a/0x110 [ 68.379152] [<ffffffff8100f435>] do_trap+0xf5/0x170 [ 68.379168] [<ffffffff8100f52b>] do_int3+0x7b/0xe0 [ 68.379180] [<ffffffff812f4a6f>] int3+0x9f/0xd0 [ 68.379203] <<EOE>> [ 68.379229] in libglib-2.0.so.0.1505.0[3d2c800000+dc000] and tracked it down to: commit 03252919b79891063cf99145612360efbdf9500b Author: Andi Kleen <ak@suse.de> Date: Wed Jan 30 13:33:18 2008 +0100 x86: print which shared library/executable faulted in segfault etc. messages the problem is that we call down_read() from an atomic context. Solve this by returning from print_vma_addr() if the preempt count is elevated. Update preempt_conditional_sti / preempt_conditional_cli to unconditionally lift the preempt count even on !CONFIG_PREEMPT. Reported-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-13 19:21:06 +00:00
/*
* Do not print if we are in atomic
* contexts (in exception stacks, etc.):
*/
if (preempt_count())
return;
down_read(&mm->mmap_sem);
vma = find_vma(mm, ip);
if (vma && vma->vm_file) {
struct file *f = vma->vm_file;
char *buf = (char *)__get_free_page(GFP_KERNEL);
if (buf) {
char *p, *s;
p = d_path(&f->f_path, buf, PAGE_SIZE);
if (IS_ERR(p))
p = "?";
s = strrchr(p, '/');
if (s)
p = s+1;
printk("%s%s[%lx+%lx]", prefix, p,
vma->vm_start,
vma->vm_end - vma->vm_start);
free_page((unsigned long)buf);
}
}
up_read(&current->mm->mmap_sem);
}
#ifdef CONFIG_PROVE_LOCKING
void might_fault(void)
{
/*
* Some code (nfs/sunrpc) uses socket ops on kernel memory while
* holding the mmap_sem, this is safe because kernel memory doesn't
* get paged out, therefore we'll never actually fault, and the
* below annotations will generate false positives.
*/
if (segment_eq(get_fs(), KERNEL_DS))
return;
might_sleep();
/*
* it would be nicer only to annotate paths which are not under
* pagefault_disable, however that requires a larger audit and
* providing helpers like get_user_atomic.
*/
if (!in_atomic() && current->mm)
might_lock_read(&current->mm->mmap_sem);
}
EXPORT_SYMBOL(might_fault);
#endif