aha/fs/xfs/xfs_extfree_item.c

574 lines
15 KiB
C
Raw Normal View History

/*
* Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_buf_item.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_trans_priv.h"
#include "xfs_extfree_item.h"
kmem_zone_t *xfs_efi_zone;
kmem_zone_t *xfs_efd_zone;
STATIC void xfs_efi_item_unlock(xfs_efi_log_item_t *);
void
xfs_efi_item_free(xfs_efi_log_item_t *efip)
{
int nexts = efip->efi_format.efi_nextents;
if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
kmem_free(efip);
} else {
kmem_zone_free(xfs_efi_zone, efip);
}
}
/*
* This returns the number of iovecs needed to log the given efi item.
* We only need 1 iovec for an efi item. It just logs the efi_log_format
* structure.
*/
/*ARGSUSED*/
STATIC uint
xfs_efi_item_size(xfs_efi_log_item_t *efip)
{
return 1;
}
/*
* This is called to fill in the vector of log iovecs for the
* given efi log item. We use only 1 iovec, and we point that
* at the efi_log_format structure embedded in the efi item.
* It is at this point that we assert that all of the extent
* slots in the efi item have been filled.
*/
STATIC void
xfs_efi_item_format(xfs_efi_log_item_t *efip,
xfs_log_iovec_t *log_vector)
{
uint size;
ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents);
efip->efi_format.efi_type = XFS_LI_EFI;
size = sizeof(xfs_efi_log_format_t);
size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
efip->efi_format.efi_size = 1;
log_vector->i_addr = (xfs_caddr_t)&(efip->efi_format);
log_vector->i_len = size;
XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFI_FORMAT);
ASSERT(size >= sizeof(xfs_efi_log_format_t));
}
/*
* Pinning has no meaning for an efi item, so just return.
*/
/*ARGSUSED*/
STATIC void
xfs_efi_item_pin(xfs_efi_log_item_t *efip)
{
return;
}
/*
* While EFIs cannot really be pinned, the unpin operation is the
* last place at which the EFI is manipulated during a transaction.
* Here we coordinate with xfs_efi_cancel() to determine who gets to
* free the EFI.
*/
/*ARGSUSED*/
STATIC void
xfs_efi_item_unpin(xfs_efi_log_item_t *efip, int stale)
{
xfs_mount_t *mp;
mp = efip->efi_item.li_mountp;
spin_lock(&mp->m_ail_lock);
if (efip->efi_flags & XFS_EFI_CANCELED) {
/*
* xfs_trans_delete_ail() drops the AIL lock.
*/
xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip);
xfs_efi_item_free(efip);
} else {
efip->efi_flags |= XFS_EFI_COMMITTED;
spin_unlock(&mp->m_ail_lock);
}
}
/*
* like unpin only we have to also clear the xaction descriptor
* pointing the log item if we free the item. This routine duplicates
* unpin because efi_flags is protected by the AIL lock. Freeing
* the descriptor and then calling unpin would force us to drop the AIL
* lock which would open up a race condition.
*/
STATIC void
xfs_efi_item_unpin_remove(xfs_efi_log_item_t *efip, xfs_trans_t *tp)
{
xfs_mount_t *mp;
xfs_log_item_desc_t *lidp;
mp = efip->efi_item.li_mountp;
spin_lock(&mp->m_ail_lock);
if (efip->efi_flags & XFS_EFI_CANCELED) {
/*
* free the xaction descriptor pointing to this item
*/
lidp = xfs_trans_find_item(tp, (xfs_log_item_t *) efip);
xfs_trans_free_item(tp, lidp);
/*
* pull the item off the AIL.
* xfs_trans_delete_ail() drops the AIL lock.
*/
xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip);
xfs_efi_item_free(efip);
} else {
efip->efi_flags |= XFS_EFI_COMMITTED;
spin_unlock(&mp->m_ail_lock);
}
}
/*
* Efi items have no locking or pushing. However, since EFIs are
* pulled from the AIL when their corresponding EFDs are committed
* to disk, their situation is very similar to being pinned. Return
* XFS_ITEM_PINNED so that the caller will eventually flush the log.
* This should help in getting the EFI out of the AIL.
*/
/*ARGSUSED*/
STATIC uint
xfs_efi_item_trylock(xfs_efi_log_item_t *efip)
{
return XFS_ITEM_PINNED;
}
/*
* Efi items have no locking, so just return.
*/
/*ARGSUSED*/
STATIC void
xfs_efi_item_unlock(xfs_efi_log_item_t *efip)
{
if (efip->efi_item.li_flags & XFS_LI_ABORTED)
xfs_efi_item_free(efip);
return;
}
/*
* The EFI is logged only once and cannot be moved in the log, so
* simply return the lsn at which it's been logged. The canceled
* flag is not paid any attention here. Checking for that is delayed
* until the EFI is unpinned.
*/
/*ARGSUSED*/
STATIC xfs_lsn_t
xfs_efi_item_committed(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
{
return lsn;
}
/*
* There isn't much you can do to push on an efi item. It is simply
* stuck waiting for all of its corresponding efd items to be
* committed to disk.
*/
/*ARGSUSED*/
STATIC void
xfs_efi_item_push(xfs_efi_log_item_t *efip)
{
return;
}
/*
* The EFI dependency tracking op doesn't do squat. It can't because
* it doesn't know where the free extent is coming from. The dependency
* tracking has to be handled by the "enclosing" metadata object. For
* example, for inodes, the inode is locked throughout the extent freeing
* so the dependency should be recorded there.
*/
/*ARGSUSED*/
STATIC void
xfs_efi_item_committing(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
{
return;
}
/*
* This is the ops vector shared by all efi log items.
*/
static struct xfs_item_ops xfs_efi_item_ops = {
.iop_size = (uint(*)(xfs_log_item_t*))xfs_efi_item_size,
.iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
xfs_efi_item_format,
.iop_pin = (void(*)(xfs_log_item_t*))xfs_efi_item_pin,
.iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efi_item_unpin,
.iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *))
xfs_efi_item_unpin_remove,
.iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efi_item_trylock,
.iop_unlock = (void(*)(xfs_log_item_t*))xfs_efi_item_unlock,
.iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
xfs_efi_item_committed,
.iop_push = (void(*)(xfs_log_item_t*))xfs_efi_item_push,
.iop_pushbuf = NULL,
.iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
xfs_efi_item_committing
};
/*
* Allocate and initialize an efi item with the given number of extents.
*/
xfs_efi_log_item_t *
xfs_efi_init(xfs_mount_t *mp,
uint nextents)
{
xfs_efi_log_item_t *efip;
uint size;
ASSERT(nextents > 0);
if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
size = (uint)(sizeof(xfs_efi_log_item_t) +
((nextents - 1) * sizeof(xfs_extent_t)));
efip = (xfs_efi_log_item_t*)kmem_zalloc(size, KM_SLEEP);
} else {
efip = (xfs_efi_log_item_t*)kmem_zone_zalloc(xfs_efi_zone,
KM_SLEEP);
}
efip->efi_item.li_type = XFS_LI_EFI;
efip->efi_item.li_ops = &xfs_efi_item_ops;
efip->efi_item.li_mountp = mp;
efip->efi_format.efi_nextents = nextents;
efip->efi_format.efi_id = (__psint_t)(void*)efip;
return (efip);
}
/*
* Copy an EFI format buffer from the given buf, and into the destination
* EFI format structure.
* The given buffer can be in 32 bit or 64 bit form (which has different padding),
* one of which will be the native format for this kernel.
* It will handle the conversion of formats if necessary.
*/
int
xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
{
xfs_efi_log_format_t *src_efi_fmt = (xfs_efi_log_format_t *)buf->i_addr;
uint i;
uint len = sizeof(xfs_efi_log_format_t) +
(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
uint len32 = sizeof(xfs_efi_log_format_32_t) +
(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
uint len64 = sizeof(xfs_efi_log_format_64_t) +
(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
if (buf->i_len == len) {
memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
return 0;
} else if (buf->i_len == len32) {
xfs_efi_log_format_32_t *src_efi_fmt_32 =
(xfs_efi_log_format_32_t *)buf->i_addr;
dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
dst_efi_fmt->efi_extents[i].ext_start =
src_efi_fmt_32->efi_extents[i].ext_start;
dst_efi_fmt->efi_extents[i].ext_len =
src_efi_fmt_32->efi_extents[i].ext_len;
}
return 0;
} else if (buf->i_len == len64) {
xfs_efi_log_format_64_t *src_efi_fmt_64 =
(xfs_efi_log_format_64_t *)buf->i_addr;
dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
dst_efi_fmt->efi_extents[i].ext_start =
src_efi_fmt_64->efi_extents[i].ext_start;
dst_efi_fmt->efi_extents[i].ext_len =
src_efi_fmt_64->efi_extents[i].ext_len;
}
return 0;
}
return EFSCORRUPTED;
}
/*
* This is called by the efd item code below to release references to
* the given efi item. Each efd calls this with the number of
* extents that it has logged, and when the sum of these reaches
* the total number of extents logged by this efi item we can free
* the efi item.
*
* Freeing the efi item requires that we remove it from the AIL.
* We'll use the AIL lock to protect our counters as well as
* the removal from the AIL.
*/
void
xfs_efi_release(xfs_efi_log_item_t *efip,
uint nextents)
{
xfs_mount_t *mp;
int extents_left;
mp = efip->efi_item.li_mountp;
ASSERT(efip->efi_next_extent > 0);
ASSERT(efip->efi_flags & XFS_EFI_COMMITTED);
spin_lock(&mp->m_ail_lock);
ASSERT(efip->efi_next_extent >= nextents);
efip->efi_next_extent -= nextents;
extents_left = efip->efi_next_extent;
if (extents_left == 0) {
/*
* xfs_trans_delete_ail() drops the AIL lock.
*/
xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip);
xfs_efi_item_free(efip);
} else {
spin_unlock(&mp->m_ail_lock);
}
}
STATIC void
xfs_efd_item_free(xfs_efd_log_item_t *efdp)
{
int nexts = efdp->efd_format.efd_nextents;
if (nexts > XFS_EFD_MAX_FAST_EXTENTS) {
kmem_free(efdp);
} else {
kmem_zone_free(xfs_efd_zone, efdp);
}
}
/*
* This returns the number of iovecs needed to log the given efd item.
* We only need 1 iovec for an efd item. It just logs the efd_log_format
* structure.
*/
/*ARGSUSED*/
STATIC uint
xfs_efd_item_size(xfs_efd_log_item_t *efdp)
{
return 1;
}
/*
* This is called to fill in the vector of log iovecs for the
* given efd log item. We use only 1 iovec, and we point that
* at the efd_log_format structure embedded in the efd item.
* It is at this point that we assert that all of the extent
* slots in the efd item have been filled.
*/
STATIC void
xfs_efd_item_format(xfs_efd_log_item_t *efdp,
xfs_log_iovec_t *log_vector)
{
uint size;
ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
efdp->efd_format.efd_type = XFS_LI_EFD;
size = sizeof(xfs_efd_log_format_t);
size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
efdp->efd_format.efd_size = 1;
log_vector->i_addr = (xfs_caddr_t)&(efdp->efd_format);
log_vector->i_len = size;
XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFD_FORMAT);
ASSERT(size >= sizeof(xfs_efd_log_format_t));
}
/*
* Pinning has no meaning for an efd item, so just return.
*/
/*ARGSUSED*/
STATIC void
xfs_efd_item_pin(xfs_efd_log_item_t *efdp)
{
return;
}
/*
* Since pinning has no meaning for an efd item, unpinning does
* not either.
*/
/*ARGSUSED*/
STATIC void
xfs_efd_item_unpin(xfs_efd_log_item_t *efdp, int stale)
{
return;
}
/*ARGSUSED*/
STATIC void
xfs_efd_item_unpin_remove(xfs_efd_log_item_t *efdp, xfs_trans_t *tp)
{
return;
}
/*
* Efd items have no locking, so just return success.
*/
/*ARGSUSED*/
STATIC uint
xfs_efd_item_trylock(xfs_efd_log_item_t *efdp)
{
return XFS_ITEM_LOCKED;
}
/*
* Efd items have no locking or pushing, so return failure
* so that the caller doesn't bother with us.
*/
/*ARGSUSED*/
STATIC void
xfs_efd_item_unlock(xfs_efd_log_item_t *efdp)
{
if (efdp->efd_item.li_flags & XFS_LI_ABORTED)
xfs_efd_item_free(efdp);
return;
}
/*
* When the efd item is committed to disk, all we need to do
* is delete our reference to our partner efi item and then
* free ourselves. Since we're freeing ourselves we must
* return -1 to keep the transaction code from further referencing
* this item.
*/
/*ARGSUSED*/
STATIC xfs_lsn_t
xfs_efd_item_committed(xfs_efd_log_item_t *efdp, xfs_lsn_t lsn)
{
/*
* If we got a log I/O error, it's always the case that the LR with the
* EFI got unpinned and freed before the EFD got aborted.
*/
if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0)
xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
xfs_efd_item_free(efdp);
return (xfs_lsn_t)-1;
}
/*
* There isn't much you can do to push on an efd item. It is simply
* stuck waiting for the log to be flushed to disk.
*/
/*ARGSUSED*/
STATIC void
xfs_efd_item_push(xfs_efd_log_item_t *efdp)
{
return;
}
/*
* The EFD dependency tracking op doesn't do squat. It can't because
* it doesn't know where the free extent is coming from. The dependency
* tracking has to be handled by the "enclosing" metadata object. For
* example, for inodes, the inode is locked throughout the extent freeing
* so the dependency should be recorded there.
*/
/*ARGSUSED*/
STATIC void
xfs_efd_item_committing(xfs_efd_log_item_t *efip, xfs_lsn_t lsn)
{
return;
}
/*
* This is the ops vector shared by all efd log items.
*/
static struct xfs_item_ops xfs_efd_item_ops = {
.iop_size = (uint(*)(xfs_log_item_t*))xfs_efd_item_size,
.iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
xfs_efd_item_format,
.iop_pin = (void(*)(xfs_log_item_t*))xfs_efd_item_pin,
.iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efd_item_unpin,
.iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
xfs_efd_item_unpin_remove,
.iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efd_item_trylock,
.iop_unlock = (void(*)(xfs_log_item_t*))xfs_efd_item_unlock,
.iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
xfs_efd_item_committed,
.iop_push = (void(*)(xfs_log_item_t*))xfs_efd_item_push,
.iop_pushbuf = NULL,
.iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
xfs_efd_item_committing
};
/*
* Allocate and initialize an efd item with the given number of extents.
*/
xfs_efd_log_item_t *
xfs_efd_init(xfs_mount_t *mp,
xfs_efi_log_item_t *efip,
uint nextents)
{
xfs_efd_log_item_t *efdp;
uint size;
ASSERT(nextents > 0);
if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
size = (uint)(sizeof(xfs_efd_log_item_t) +
((nextents - 1) * sizeof(xfs_extent_t)));
efdp = (xfs_efd_log_item_t*)kmem_zalloc(size, KM_SLEEP);
} else {
efdp = (xfs_efd_log_item_t*)kmem_zone_zalloc(xfs_efd_zone,
KM_SLEEP);
}
efdp->efd_item.li_type = XFS_LI_EFD;
efdp->efd_item.li_ops = &xfs_efd_item_ops;
efdp->efd_item.li_mountp = mp;
efdp->efd_efip = efip;
efdp->efd_format.efd_nextents = nextents;
efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
return (efdp);
}