aha/drivers/acpi/ec.c

1025 lines
23 KiB
C
Raw Normal View History

/*
* acpi_ec.c - ACPI Embedded Controller Driver ($Revision: 38 $)
*
* Copyright (C) 2004 Luming Yu <luming.yu@intel.com>
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <asm/io.h>
#include <acpi/acpi_bus.h>
#include <acpi/acpi_drivers.h>
#include <acpi/actypes.h>
#define _COMPONENT ACPI_EC_COMPONENT
ACPI_MODULE_NAME ("acpi_ec")
#define ACPI_EC_COMPONENT 0x00100000
#define ACPI_EC_CLASS "embedded_controller"
#define ACPI_EC_HID "PNP0C09"
#define ACPI_EC_DRIVER_NAME "ACPI Embedded Controller Driver"
#define ACPI_EC_DEVICE_NAME "Embedded Controller"
#define ACPI_EC_FILE_INFO "info"
#define ACPI_EC_FLAG_OBF 0x01 /* Output buffer full */
#define ACPI_EC_FLAG_IBF 0x02 /* Input buffer full */
#define ACPI_EC_FLAG_SCI 0x20 /* EC-SCI occurred */
#define ACPI_EC_EVENT_OBF 0x01 /* Output buffer full */
#define ACPI_EC_EVENT_IBE 0x02 /* Input buffer empty */
#define ACPI_EC_UDELAY 100 /* Poll @ 100us increments */
#define ACPI_EC_UDELAY_COUNT 1000 /* Wait 10ms max. during EC ops */
#define ACPI_EC_UDELAY_GLK 1000 /* Wait 1ms max. to get global lock */
#define ACPI_EC_COMMAND_READ 0x80
#define ACPI_EC_COMMAND_WRITE 0x81
#define ACPI_EC_COMMAND_QUERY 0x84
static int acpi_ec_add (struct acpi_device *device);
static int acpi_ec_remove (struct acpi_device *device, int type);
static int acpi_ec_start (struct acpi_device *device);
static int acpi_ec_stop (struct acpi_device *device, int type);
static struct acpi_driver acpi_ec_driver = {
.name = ACPI_EC_DRIVER_NAME,
.class = ACPI_EC_CLASS,
.ids = ACPI_EC_HID,
.ops = {
.add = acpi_ec_add,
.remove = acpi_ec_remove,
.start = acpi_ec_start,
.stop = acpi_ec_stop,
},
};
struct acpi_ec {
acpi_handle handle;
unsigned long uid;
unsigned long gpe_bit;
struct acpi_generic_address status_addr;
struct acpi_generic_address command_addr;
struct acpi_generic_address data_addr;
unsigned long global_lock;
spinlock_t lock;
};
/* If we find an EC via the ECDT, we need to keep a ptr to its context */
static struct acpi_ec *ec_ecdt;
/* External interfaces use first EC only, so remember */
static struct acpi_device *first_ec;
/* --------------------------------------------------------------------------
Transaction Management
-------------------------------------------------------------------------- */
static int
acpi_ec_wait (
struct acpi_ec *ec,
u8 event)
{
u32 acpi_ec_status = 0;
u32 i = ACPI_EC_UDELAY_COUNT;
if (!ec)
return -EINVAL;
/* Poll the EC status register waiting for the event to occur. */
switch (event) {
case ACPI_EC_EVENT_OBF:
do {
acpi_hw_low_level_read(8, &acpi_ec_status, &ec->status_addr);
if (acpi_ec_status & ACPI_EC_FLAG_OBF)
return 0;
udelay(ACPI_EC_UDELAY);
} while (--i>0);
break;
case ACPI_EC_EVENT_IBE:
do {
acpi_hw_low_level_read(8, &acpi_ec_status, &ec->status_addr);
if (!(acpi_ec_status & ACPI_EC_FLAG_IBF))
return 0;
udelay(ACPI_EC_UDELAY);
} while (--i>0);
break;
default:
return -EINVAL;
}
return -ETIME;
}
static int
acpi_ec_read (
struct acpi_ec *ec,
u8 address,
u32 *data)
{
acpi_status status = AE_OK;
int result = 0;
unsigned long flags = 0;
u32 glk = 0;
ACPI_FUNCTION_TRACE("acpi_ec_read");
if (!ec || !data)
return_VALUE(-EINVAL);
*data = 0;
if (ec->global_lock) {
status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk);
if (ACPI_FAILURE(status))
return_VALUE(-ENODEV);
}
spin_lock_irqsave(&ec->lock, flags);
acpi_hw_low_level_write(8, ACPI_EC_COMMAND_READ, &ec->command_addr);
result = acpi_ec_wait(ec, ACPI_EC_EVENT_IBE);
if (result)
goto end;
acpi_hw_low_level_write(8, address, &ec->data_addr);
result = acpi_ec_wait(ec, ACPI_EC_EVENT_OBF);
if (result)
goto end;
acpi_hw_low_level_read(8, data, &ec->data_addr);
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Read [%02x] from address [%02x]\n",
*data, address));
end:
spin_unlock_irqrestore(&ec->lock, flags);
if (ec->global_lock)
acpi_release_global_lock(glk);
return_VALUE(result);
}
static int
acpi_ec_write (
struct acpi_ec *ec,
u8 address,
u8 data)
{
int result = 0;
acpi_status status = AE_OK;
unsigned long flags = 0;
u32 glk = 0;
ACPI_FUNCTION_TRACE("acpi_ec_write");
if (!ec)
return_VALUE(-EINVAL);
if (ec->global_lock) {
status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk);
if (ACPI_FAILURE(status))
return_VALUE(-ENODEV);
}
spin_lock_irqsave(&ec->lock, flags);
acpi_hw_low_level_write(8, ACPI_EC_COMMAND_WRITE, &ec->command_addr);
result = acpi_ec_wait(ec, ACPI_EC_EVENT_IBE);
if (result)
goto end;
acpi_hw_low_level_write(8, address, &ec->data_addr);
result = acpi_ec_wait(ec, ACPI_EC_EVENT_IBE);
if (result)
goto end;
acpi_hw_low_level_write(8, data, &ec->data_addr);
result = acpi_ec_wait(ec, ACPI_EC_EVENT_IBE);
if (result)
goto end;
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Wrote [%02x] to address [%02x]\n",
data, address));
end:
spin_unlock_irqrestore(&ec->lock, flags);
if (ec->global_lock)
acpi_release_global_lock(glk);
return_VALUE(result);
}
/*
* Externally callable EC access functions. For now, assume 1 EC only
*/
int
ec_read(u8 addr, u8 *val)
{
struct acpi_ec *ec;
int err;
u32 temp_data;
if (!first_ec)
return -ENODEV;
ec = acpi_driver_data(first_ec);
err = acpi_ec_read(ec, addr, &temp_data);
if (!err) {
*val = temp_data;
return 0;
}
else
return err;
}
EXPORT_SYMBOL(ec_read);
int
ec_write(u8 addr, u8 val)
{
struct acpi_ec *ec;
int err;
if (!first_ec)
return -ENODEV;
ec = acpi_driver_data(first_ec);
err = acpi_ec_write(ec, addr, val);
return err;
}
EXPORT_SYMBOL(ec_write);
static int
acpi_ec_query (
struct acpi_ec *ec,
u32 *data)
{
int result = 0;
acpi_status status = AE_OK;
unsigned long flags = 0;
u32 glk = 0;
ACPI_FUNCTION_TRACE("acpi_ec_query");
if (!ec || !data)
return_VALUE(-EINVAL);
*data = 0;
if (ec->global_lock) {
status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk);
if (ACPI_FAILURE(status))
return_VALUE(-ENODEV);
}
/*
* Query the EC to find out which _Qxx method we need to evaluate.
* Note that successful completion of the query causes the ACPI_EC_SCI
* bit to be cleared (and thus clearing the interrupt source).
*/
spin_lock_irqsave(&ec->lock, flags);
acpi_hw_low_level_write(8, ACPI_EC_COMMAND_QUERY, &ec->command_addr);
result = acpi_ec_wait(ec, ACPI_EC_EVENT_OBF);
if (result)
goto end;
acpi_hw_low_level_read(8, data, &ec->data_addr);
if (!*data)
result = -ENODATA;
end:
spin_unlock_irqrestore(&ec->lock, flags);
if (ec->global_lock)
acpi_release_global_lock(glk);
return_VALUE(result);
}
/* --------------------------------------------------------------------------
Event Management
-------------------------------------------------------------------------- */
struct acpi_ec_query_data {
acpi_handle handle;
u8 data;
};
static void
acpi_ec_gpe_query (
void *ec_cxt)
{
struct acpi_ec *ec = (struct acpi_ec *) ec_cxt;
u32 value = 0;
unsigned long flags = 0;
static char object_name[5] = {'_','Q','0','0','\0'};
const char hex[] = {'0','1','2','3','4','5','6','7',
'8','9','A','B','C','D','E','F'};
ACPI_FUNCTION_TRACE("acpi_ec_gpe_query");
if (!ec_cxt)
goto end;
spin_lock_irqsave(&ec->lock, flags);
acpi_hw_low_level_read(8, &value, &ec->command_addr);
spin_unlock_irqrestore(&ec->lock, flags);
/* TBD: Implement asynch events!
* NOTE: All we care about are EC-SCI's. Other EC events are
* handled via polling (yuck!). This is because some systems
* treat EC-SCIs as level (versus EDGE!) triggered, preventing
* a purely interrupt-driven approach (grumble, grumble).
*/
if (!(value & ACPI_EC_FLAG_SCI))
goto end;
if (acpi_ec_query(ec, &value))
goto end;
object_name[2] = hex[((value >> 4) & 0x0F)];
object_name[3] = hex[(value & 0x0F)];
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Evaluating %s\n", object_name));
acpi_evaluate_object(ec->handle, object_name, NULL, NULL);
end:
acpi_enable_gpe(NULL, ec->gpe_bit, ACPI_NOT_ISR);
}
static u32
acpi_ec_gpe_handler (
void *data)
{
acpi_status status = AE_OK;
struct acpi_ec *ec = (struct acpi_ec *) data;
if (!ec)
return ACPI_INTERRUPT_NOT_HANDLED;
acpi_disable_gpe(NULL, ec->gpe_bit, ACPI_ISR);
status = acpi_os_queue_for_execution(OSD_PRIORITY_GPE,
acpi_ec_gpe_query, ec);
if (status == AE_OK)
return ACPI_INTERRUPT_HANDLED;
else
return ACPI_INTERRUPT_NOT_HANDLED;
}
/* --------------------------------------------------------------------------
Address Space Management
-------------------------------------------------------------------------- */
static acpi_status
acpi_ec_space_setup (
acpi_handle region_handle,
u32 function,
void *handler_context,
void **return_context)
{
/*
* The EC object is in the handler context and is needed
* when calling the acpi_ec_space_handler.
*/
if(function == ACPI_REGION_DEACTIVATE)
*return_context = NULL;
else
*return_context = handler_context;
return AE_OK;
}
static acpi_status
acpi_ec_space_handler (
u32 function,
acpi_physical_address address,
u32 bit_width,
acpi_integer *value,
void *handler_context,
void *region_context)
{
int result = 0;
struct acpi_ec *ec = NULL;
u32 temp = 0;
acpi_integer f_v = 0;
int i = 0;
ACPI_FUNCTION_TRACE("acpi_ec_space_handler");
if ((address > 0xFF) || !value || !handler_context)
return_VALUE(AE_BAD_PARAMETER);
if(bit_width != 8) {
printk(KERN_WARNING PREFIX "acpi_ec_space_handler: bit_width should be 8\n");
if (acpi_strict)
return_VALUE(AE_BAD_PARAMETER);
}
ec = (struct acpi_ec *) handler_context;
next_byte:
switch (function) {
case ACPI_READ:
result = acpi_ec_read(ec, (u8) address, &temp);
*value = (acpi_integer) temp;
break;
case ACPI_WRITE:
result = acpi_ec_write(ec, (u8) address, (u8) *value);
break;
default:
result = -EINVAL;
goto out;
break;
}
bit_width -= 8;
if(bit_width){
if(function == ACPI_READ)
f_v |= (acpi_integer) (*value) << 8*i;
if(function == ACPI_WRITE)
(*value) >>=8;
i++;
goto next_byte;
}
if(function == ACPI_READ){
f_v |= (acpi_integer) (*value) << 8*i;
*value = f_v;
}
out:
switch (result) {
case -EINVAL:
return_VALUE(AE_BAD_PARAMETER);
break;
case -ENODEV:
return_VALUE(AE_NOT_FOUND);
break;
case -ETIME:
return_VALUE(AE_TIME);
break;
default:
return_VALUE(AE_OK);
}
}
/* --------------------------------------------------------------------------
FS Interface (/proc)
-------------------------------------------------------------------------- */
static struct proc_dir_entry *acpi_ec_dir;
static int
acpi_ec_read_info (struct seq_file *seq, void *offset)
{
struct acpi_ec *ec = (struct acpi_ec *) seq->private;
ACPI_FUNCTION_TRACE("acpi_ec_read_info");
if (!ec)
goto end;
seq_printf(seq, "gpe bit: 0x%02x\n",
(u32) ec->gpe_bit);
seq_printf(seq, "ports: 0x%02x, 0x%02x\n",
(u32) ec->status_addr.address, (u32) ec->data_addr.address);
seq_printf(seq, "use global lock: %s\n",
ec->global_lock?"yes":"no");
end:
return_VALUE(0);
}
static int acpi_ec_info_open_fs(struct inode *inode, struct file *file)
{
return single_open(file, acpi_ec_read_info, PDE(inode)->data);
}
static struct file_operations acpi_ec_info_ops = {
.open = acpi_ec_info_open_fs,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.owner = THIS_MODULE,
};
static int
acpi_ec_add_fs (
struct acpi_device *device)
{
struct proc_dir_entry *entry = NULL;
ACPI_FUNCTION_TRACE("acpi_ec_add_fs");
if (!acpi_device_dir(device)) {
acpi_device_dir(device) = proc_mkdir(acpi_device_bid(device),
acpi_ec_dir);
if (!acpi_device_dir(device))
return_VALUE(-ENODEV);
}
entry = create_proc_entry(ACPI_EC_FILE_INFO, S_IRUGO,
acpi_device_dir(device));
if (!entry)
ACPI_DEBUG_PRINT((ACPI_DB_WARN,
"Unable to create '%s' fs entry\n",
ACPI_EC_FILE_INFO));
else {
entry->proc_fops = &acpi_ec_info_ops;
entry->data = acpi_driver_data(device);
entry->owner = THIS_MODULE;
}
return_VALUE(0);
}
static int
acpi_ec_remove_fs (
struct acpi_device *device)
{
ACPI_FUNCTION_TRACE("acpi_ec_remove_fs");
if (acpi_device_dir(device)) {
remove_proc_entry(ACPI_EC_FILE_INFO, acpi_device_dir(device));
remove_proc_entry(acpi_device_bid(device), acpi_ec_dir);
acpi_device_dir(device) = NULL;
}
return_VALUE(0);
}
/* --------------------------------------------------------------------------
Driver Interface
-------------------------------------------------------------------------- */
static int
acpi_ec_add (
struct acpi_device *device)
{
int result = 0;
acpi_status status = AE_OK;
struct acpi_ec *ec = NULL;
unsigned long uid;
ACPI_FUNCTION_TRACE("acpi_ec_add");
if (!device)
return_VALUE(-EINVAL);
ec = kmalloc(sizeof(struct acpi_ec), GFP_KERNEL);
if (!ec)
return_VALUE(-ENOMEM);
memset(ec, 0, sizeof(struct acpi_ec));
ec->handle = device->handle;
ec->uid = -1;
spin_lock_init(&ec->lock);
strcpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME);
strcpy(acpi_device_class(device), ACPI_EC_CLASS);
acpi_driver_data(device) = ec;
/* Use the global lock for all EC transactions? */
acpi_evaluate_integer(ec->handle, "_GLK", NULL, &ec->global_lock);
/* If our UID matches the UID for the ECDT-enumerated EC,
we now have the *real* EC info, so kill the makeshift one.*/
acpi_evaluate_integer(ec->handle, "_UID", NULL, &uid);
if (ec_ecdt && ec_ecdt->uid == uid) {
acpi_remove_address_space_handler(ACPI_ROOT_OBJECT,
ACPI_ADR_SPACE_EC, &acpi_ec_space_handler);
acpi_remove_gpe_handler(NULL, ec_ecdt->gpe_bit, &acpi_ec_gpe_handler);
kfree(ec_ecdt);
}
/* Get GPE bit assignment (EC events). */
/* TODO: Add support for _GPE returning a package */
status = acpi_evaluate_integer(ec->handle, "_GPE", NULL, &ec->gpe_bit);
if (ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Error obtaining GPE bit assignment\n"));
result = -ENODEV;
goto end;
}
result = acpi_ec_add_fs(device);
if (result)
goto end;
printk(KERN_INFO PREFIX "%s [%s] (gpe %d)\n",
acpi_device_name(device), acpi_device_bid(device),
(u32) ec->gpe_bit);
if (!first_ec)
first_ec = device;
end:
if (result)
kfree(ec);
return_VALUE(result);
}
static int
acpi_ec_remove (
struct acpi_device *device,
int type)
{
struct acpi_ec *ec = NULL;
ACPI_FUNCTION_TRACE("acpi_ec_remove");
if (!device)
return_VALUE(-EINVAL);
ec = acpi_driver_data(device);
acpi_ec_remove_fs(device);
kfree(ec);
return_VALUE(0);
}
static acpi_status
acpi_ec_io_ports (
struct acpi_resource *resource,
void *context)
{
struct acpi_ec *ec = (struct acpi_ec *) context;
struct acpi_generic_address *addr;
if (resource->id != ACPI_RSTYPE_IO) {
return AE_OK;
}
/*
* The first address region returned is the data port, and
* the second address region returned is the status/command
* port.
*/
if (ec->data_addr.register_bit_width == 0) {
addr = &ec->data_addr;
} else if (ec->command_addr.register_bit_width == 0) {
addr = &ec->command_addr;
} else {
return AE_CTRL_TERMINATE;
}
addr->address_space_id = ACPI_ADR_SPACE_SYSTEM_IO;
addr->register_bit_width = 8;
addr->register_bit_offset = 0;
addr->address = resource->data.io.min_base_address;
return AE_OK;
}
static int
acpi_ec_start (
struct acpi_device *device)
{
acpi_status status = AE_OK;
struct acpi_ec *ec = NULL;
ACPI_FUNCTION_TRACE("acpi_ec_start");
if (!device)
return_VALUE(-EINVAL);
ec = acpi_driver_data(device);
if (!ec)
return_VALUE(-EINVAL);
/*
* Get I/O port addresses. Convert to GAS format.
*/
status = acpi_walk_resources(ec->handle, METHOD_NAME__CRS,
acpi_ec_io_ports, ec);
if (ACPI_FAILURE(status) || ec->command_addr.register_bit_width == 0) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Error getting I/O port addresses"));
return_VALUE(-ENODEV);
}
ec->status_addr = ec->command_addr;
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "gpe=0x%02x, ports=0x%2x,0x%2x\n",
(u32) ec->gpe_bit, (u32) ec->command_addr.address,
(u32) ec->data_addr.address));
/*
* Install GPE handler
*/
status = acpi_install_gpe_handler(NULL, ec->gpe_bit,
ACPI_GPE_EDGE_TRIGGERED, &acpi_ec_gpe_handler, ec);
if (ACPI_FAILURE(status)) {
return_VALUE(-ENODEV);
}
acpi_set_gpe_type (NULL, ec->gpe_bit, ACPI_GPE_TYPE_RUNTIME);
acpi_enable_gpe (NULL, ec->gpe_bit, ACPI_NOT_ISR);
status = acpi_install_address_space_handler (ec->handle,
ACPI_ADR_SPACE_EC, &acpi_ec_space_handler,
&acpi_ec_space_setup, ec);
if (ACPI_FAILURE(status)) {
acpi_remove_gpe_handler(NULL, ec->gpe_bit, &acpi_ec_gpe_handler);
return_VALUE(-ENODEV);
}
return_VALUE(AE_OK);
}
static int
acpi_ec_stop (
struct acpi_device *device,
int type)
{
acpi_status status = AE_OK;
struct acpi_ec *ec = NULL;
ACPI_FUNCTION_TRACE("acpi_ec_stop");
if (!device)
return_VALUE(-EINVAL);
ec = acpi_driver_data(device);
status = acpi_remove_address_space_handler(ec->handle,
ACPI_ADR_SPACE_EC, &acpi_ec_space_handler);
if (ACPI_FAILURE(status))
return_VALUE(-ENODEV);
status = acpi_remove_gpe_handler(NULL, ec->gpe_bit, &acpi_ec_gpe_handler);
if (ACPI_FAILURE(status))
return_VALUE(-ENODEV);
return_VALUE(0);
}
static acpi_status __init
acpi_fake_ecdt_callback (
acpi_handle handle,
u32 Level,
void *context,
void **retval)
{
acpi_status status;
status = acpi_walk_resources(handle, METHOD_NAME__CRS,
acpi_ec_io_ports, ec_ecdt);
if (ACPI_FAILURE(status))
return status;
ec_ecdt->status_addr = ec_ecdt->command_addr;
ec_ecdt->uid = -1;
acpi_evaluate_integer(handle, "_UID", NULL, &ec_ecdt->uid);
status = acpi_evaluate_integer(handle, "_GPE", NULL, &ec_ecdt->gpe_bit);
if (ACPI_FAILURE(status))
return status;
spin_lock_init(&ec_ecdt->lock);
ec_ecdt->global_lock = TRUE;
ec_ecdt->handle = handle;
printk(KERN_INFO PREFIX "GPE=0x%02x, ports=0x%2x, 0x%2x\n",
(u32) ec_ecdt->gpe_bit, (u32) ec_ecdt->command_addr.address,
(u32) ec_ecdt->data_addr.address);
return AE_CTRL_TERMINATE;
}
/*
* Some BIOS (such as some from Gateway laptops) access EC region very early
* such as in BAT0._INI or EC._INI before an EC device is found and
* do not provide an ECDT. According to ACPI spec, ECDT isn't mandatorily
* required, but if EC regison is accessed early, it is required.
* The routine tries to workaround the BIOS bug by pre-scan EC device
* It assumes that _CRS, _HID, _GPE, _UID methods of EC don't touch any
* op region (since _REG isn't invoked yet). The assumption is true for
* all systems found.
*/
static int __init
acpi_ec_fake_ecdt(void)
{
acpi_status status;
int ret = 0;
printk(KERN_INFO PREFIX "Try to make an fake ECDT\n");
ec_ecdt = kmalloc(sizeof(struct acpi_ec), GFP_KERNEL);
if (!ec_ecdt) {
ret = -ENOMEM;
goto error;
}
memset(ec_ecdt, 0, sizeof(struct acpi_ec));
status = acpi_get_devices (ACPI_EC_HID,
acpi_fake_ecdt_callback,
NULL,
NULL);
if (ACPI_FAILURE(status)) {
kfree(ec_ecdt);
ec_ecdt = NULL;
ret = -ENODEV;
goto error;
}
return 0;
error:
printk(KERN_ERR PREFIX "Can't make an fake ECDT\n");
return ret;
}
static int __init
acpi_ec_get_real_ecdt(void)
{
acpi_status status;
struct acpi_table_ecdt *ecdt_ptr;
status = acpi_get_firmware_table("ECDT", 1, ACPI_LOGICAL_ADDRESSING,
(struct acpi_table_header **) &ecdt_ptr);
if (ACPI_FAILURE(status))
return -ENODEV;
printk(KERN_INFO PREFIX "Found ECDT\n");
/*
* Generate a temporary ec context to use until the namespace is scanned
*/
ec_ecdt = kmalloc(sizeof(struct acpi_ec), GFP_KERNEL);
if (!ec_ecdt)
return -ENOMEM;
memset(ec_ecdt, 0, sizeof(struct acpi_ec));
ec_ecdt->command_addr = ecdt_ptr->ec_control;
ec_ecdt->status_addr = ecdt_ptr->ec_control;
ec_ecdt->data_addr = ecdt_ptr->ec_data;
ec_ecdt->gpe_bit = ecdt_ptr->gpe_bit;
spin_lock_init(&ec_ecdt->lock);
/* use the GL just to be safe */
ec_ecdt->global_lock = TRUE;
ec_ecdt->uid = ecdt_ptr->uid;
status = acpi_get_handle(NULL, ecdt_ptr->ec_id, &ec_ecdt->handle);
if (ACPI_FAILURE(status)) {
goto error;
}
return 0;
error:
printk(KERN_ERR PREFIX "Could not use ECDT\n");
kfree(ec_ecdt);
ec_ecdt = NULL;
return -ENODEV;
}
static int __initdata acpi_fake_ecdt_enabled;
int __init
acpi_ec_ecdt_probe (void)
{
acpi_status status;
int ret;
ret = acpi_ec_get_real_ecdt();
/* Try to make a fake ECDT */
if (ret && acpi_fake_ecdt_enabled) {
ret = acpi_ec_fake_ecdt();
}
if (ret)
return 0;
/*
* Install GPE handler
*/
status = acpi_install_gpe_handler(NULL, ec_ecdt->gpe_bit,
ACPI_GPE_EDGE_TRIGGERED, &acpi_ec_gpe_handler,
ec_ecdt);
if (ACPI_FAILURE(status)) {
goto error;
}
acpi_set_gpe_type (NULL, ec_ecdt->gpe_bit, ACPI_GPE_TYPE_RUNTIME);
acpi_enable_gpe (NULL, ec_ecdt->gpe_bit, ACPI_NOT_ISR);
status = acpi_install_address_space_handler (ACPI_ROOT_OBJECT,
ACPI_ADR_SPACE_EC, &acpi_ec_space_handler,
&acpi_ec_space_setup, ec_ecdt);
if (ACPI_FAILURE(status)) {
acpi_remove_gpe_handler(NULL, ec_ecdt->gpe_bit,
&acpi_ec_gpe_handler);
goto error;
}
return 0;
error:
printk(KERN_ERR PREFIX "Could not use ECDT\n");
kfree(ec_ecdt);
ec_ecdt = NULL;
return -ENODEV;
}
static int __init acpi_ec_init (void)
{
int result = 0;
ACPI_FUNCTION_TRACE("acpi_ec_init");
if (acpi_disabled)
return_VALUE(0);
acpi_ec_dir = proc_mkdir(ACPI_EC_CLASS, acpi_root_dir);
if (!acpi_ec_dir)
return_VALUE(-ENODEV);
/* Now register the driver for the EC */
result = acpi_bus_register_driver(&acpi_ec_driver);
if (result < 0) {
remove_proc_entry(ACPI_EC_CLASS, acpi_root_dir);
return_VALUE(-ENODEV);
}
return_VALUE(result);
}
subsys_initcall(acpi_ec_init);
/* EC driver currently not unloadable */
#if 0
static void __exit
acpi_ec_exit (void)
{
ACPI_FUNCTION_TRACE("acpi_ec_exit");
acpi_bus_unregister_driver(&acpi_ec_driver);
remove_proc_entry(ACPI_EC_CLASS, acpi_root_dir);
return_VOID;
}
#endif /* 0 */
static int __init acpi_fake_ecdt_setup(char *str)
{
acpi_fake_ecdt_enabled = 1;
return 0;
}
__setup("acpi_fake_ecdt", acpi_fake_ecdt_setup);