2006-06-23 22:55:17 +00:00
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/mod_devicetable.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
|
|
|
|
#include <asm/errno.h>
|
|
|
|
#include <asm/of_device.h>
|
|
|
|
|
|
|
|
/**
|
|
|
|
* of_match_device - Tell if an of_device structure has a matching
|
|
|
|
* of_match structure
|
|
|
|
* @ids: array of of device match structures to search in
|
|
|
|
* @dev: the of device structure to match against
|
|
|
|
*
|
|
|
|
* Used by a driver to check whether an of_device present in the
|
|
|
|
* system is in its list of supported devices.
|
|
|
|
*/
|
|
|
|
const struct of_device_id *of_match_device(const struct of_device_id *matches,
|
|
|
|
const struct of_device *dev)
|
|
|
|
{
|
|
|
|
if (!dev->node)
|
|
|
|
return NULL;
|
|
|
|
while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
|
|
|
|
int match = 1;
|
|
|
|
if (matches->name[0])
|
|
|
|
match &= dev->node->name
|
|
|
|
&& !strcmp(matches->name, dev->node->name);
|
|
|
|
if (matches->type[0])
|
|
|
|
match &= dev->node->type
|
|
|
|
&& !strcmp(matches->type, dev->node->type);
|
|
|
|
if (matches->compatible[0])
|
|
|
|
match &= of_device_is_compatible(dev->node,
|
|
|
|
matches->compatible);
|
|
|
|
if (match)
|
|
|
|
return matches;
|
|
|
|
matches++;
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int of_platform_bus_match(struct device *dev, struct device_driver *drv)
|
|
|
|
{
|
|
|
|
struct of_device * of_dev = to_of_device(dev);
|
|
|
|
struct of_platform_driver * of_drv = to_of_platform_driver(drv);
|
|
|
|
const struct of_device_id * matches = of_drv->match_table;
|
|
|
|
|
|
|
|
if (!matches)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return of_match_device(matches, of_dev) != NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct of_device *of_dev_get(struct of_device *dev)
|
|
|
|
{
|
|
|
|
struct device *tmp;
|
|
|
|
|
|
|
|
if (!dev)
|
|
|
|
return NULL;
|
|
|
|
tmp = get_device(&dev->dev);
|
|
|
|
if (tmp)
|
|
|
|
return to_of_device(tmp);
|
|
|
|
else
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
void of_dev_put(struct of_device *dev)
|
|
|
|
{
|
|
|
|
if (dev)
|
|
|
|
put_device(&dev->dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static int of_device_probe(struct device *dev)
|
|
|
|
{
|
|
|
|
int error = -ENODEV;
|
|
|
|
struct of_platform_driver *drv;
|
|
|
|
struct of_device *of_dev;
|
|
|
|
const struct of_device_id *match;
|
|
|
|
|
|
|
|
drv = to_of_platform_driver(dev->driver);
|
|
|
|
of_dev = to_of_device(dev);
|
|
|
|
|
|
|
|
if (!drv->probe)
|
|
|
|
return error;
|
|
|
|
|
|
|
|
of_dev_get(of_dev);
|
|
|
|
|
|
|
|
match = of_match_device(drv->match_table, of_dev);
|
|
|
|
if (match)
|
|
|
|
error = drv->probe(of_dev, match);
|
|
|
|
if (error)
|
|
|
|
of_dev_put(of_dev);
|
|
|
|
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int of_device_remove(struct device *dev)
|
|
|
|
{
|
|
|
|
struct of_device * of_dev = to_of_device(dev);
|
|
|
|
struct of_platform_driver * drv = to_of_platform_driver(dev->driver);
|
|
|
|
|
|
|
|
if (dev->driver && drv->remove)
|
|
|
|
drv->remove(of_dev);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int of_device_suspend(struct device *dev, pm_message_t state)
|
|
|
|
{
|
|
|
|
struct of_device * of_dev = to_of_device(dev);
|
|
|
|
struct of_platform_driver * drv = to_of_platform_driver(dev->driver);
|
|
|
|
int error = 0;
|
|
|
|
|
|
|
|
if (dev->driver && drv->suspend)
|
|
|
|
error = drv->suspend(of_dev, state);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int of_device_resume(struct device * dev)
|
|
|
|
{
|
|
|
|
struct of_device * of_dev = to_of_device(dev);
|
|
|
|
struct of_platform_driver * drv = to_of_platform_driver(dev->driver);
|
|
|
|
int error = 0;
|
|
|
|
|
|
|
|
if (dev->driver && drv->resume)
|
|
|
|
error = drv->resume(of_dev);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
2006-06-29 22:08:02 +00:00
|
|
|
static int node_match(struct device *dev, void *data)
|
|
|
|
{
|
|
|
|
struct of_device *op = to_of_device(dev);
|
|
|
|
struct device_node *dp = data;
|
|
|
|
|
|
|
|
return (op->node == dp);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct of_device *of_find_device_by_node(struct device_node *dp)
|
|
|
|
{
|
|
|
|
struct device *dev = bus_find_device(&of_bus_type, NULL,
|
|
|
|
dp, node_match);
|
|
|
|
|
|
|
|
if (dev)
|
|
|
|
return to_of_device(dev);
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(of_find_device_by_node);
|
|
|
|
|
2006-06-23 22:55:17 +00:00
|
|
|
#ifdef CONFIG_PCI
|
|
|
|
struct bus_type ebus_bus_type = {
|
|
|
|
.name = "ebus",
|
|
|
|
.match = of_platform_bus_match,
|
|
|
|
.probe = of_device_probe,
|
|
|
|
.remove = of_device_remove,
|
|
|
|
.suspend = of_device_suspend,
|
|
|
|
.resume = of_device_resume,
|
|
|
|
};
|
2006-06-25 08:21:38 +00:00
|
|
|
EXPORT_SYMBOL(ebus_bus_type);
|
2006-06-23 22:55:17 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef CONFIG_SBUS
|
|
|
|
struct bus_type sbus_bus_type = {
|
|
|
|
.name = "sbus",
|
|
|
|
.match = of_platform_bus_match,
|
|
|
|
.probe = of_device_probe,
|
|
|
|
.remove = of_device_remove,
|
|
|
|
.suspend = of_device_suspend,
|
|
|
|
.resume = of_device_resume,
|
|
|
|
};
|
2006-06-25 08:21:38 +00:00
|
|
|
EXPORT_SYMBOL(sbus_bus_type);
|
2006-06-23 22:55:17 +00:00
|
|
|
#endif
|
|
|
|
|
2006-06-29 21:34:50 +00:00
|
|
|
struct bus_type of_bus_type = {
|
|
|
|
.name = "of",
|
|
|
|
.match = of_platform_bus_match,
|
|
|
|
.probe = of_device_probe,
|
|
|
|
.remove = of_device_remove,
|
|
|
|
.suspend = of_device_suspend,
|
|
|
|
.resume = of_device_resume,
|
|
|
|
};
|
|
|
|
EXPORT_SYMBOL(of_bus_type);
|
|
|
|
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
static inline u64 of_read_addr(const u32 *cell, int size)
|
2006-06-29 21:34:50 +00:00
|
|
|
{
|
|
|
|
u64 r = 0;
|
|
|
|
while (size--)
|
|
|
|
r = (r << 32) | *(cell++);
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __init get_cells(struct device_node *dp,
|
|
|
|
int *addrc, int *sizec)
|
|
|
|
{
|
|
|
|
if (addrc)
|
|
|
|
*addrc = of_n_addr_cells(dp);
|
|
|
|
if (sizec)
|
|
|
|
*sizec = of_n_size_cells(dp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Max address size we deal with */
|
|
|
|
#define OF_MAX_ADDR_CELLS 4
|
|
|
|
|
|
|
|
struct of_bus {
|
|
|
|
const char *name;
|
|
|
|
const char *addr_prop_name;
|
|
|
|
int (*match)(struct device_node *parent);
|
|
|
|
void (*count_cells)(struct device_node *child,
|
|
|
|
int *addrc, int *sizec);
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
int (*map)(u32 *addr, const u32 *range,
|
|
|
|
int na, int ns, int pna);
|
2007-03-29 07:47:23 +00:00
|
|
|
unsigned int (*get_flags)(const u32 *addr);
|
2006-06-29 21:34:50 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Default translator (generic bus)
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void of_bus_default_count_cells(struct device_node *dev,
|
|
|
|
int *addrc, int *sizec)
|
|
|
|
{
|
|
|
|
get_cells(dev, addrc, sizec);
|
|
|
|
}
|
|
|
|
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
/* Make sure the least significant 64-bits are in-range. Even
|
|
|
|
* for 3 or 4 cell values it is a good enough approximation.
|
|
|
|
*/
|
|
|
|
static int of_out_of_range(const u32 *addr, const u32 *base,
|
|
|
|
const u32 *size, int na, int ns)
|
2006-06-29 21:34:50 +00:00
|
|
|
{
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
u64 a = of_read_addr(addr, na);
|
|
|
|
u64 b = of_read_addr(base, na);
|
|
|
|
|
|
|
|
if (a < b)
|
|
|
|
return 1;
|
2006-06-29 21:34:50 +00:00
|
|
|
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
b += of_read_addr(size, ns);
|
|
|
|
if (a >= b)
|
|
|
|
return 1;
|
2006-06-29 21:34:50 +00:00
|
|
|
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
return 0;
|
2006-06-29 21:34:50 +00:00
|
|
|
}
|
|
|
|
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
static int of_bus_default_map(u32 *addr, const u32 *range,
|
|
|
|
int na, int ns, int pna)
|
2006-06-29 21:34:50 +00:00
|
|
|
{
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
u32 result[OF_MAX_ADDR_CELLS];
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (ns > 2) {
|
|
|
|
printk("of_device: Cannot handle size cells (%d) > 2.", ns);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (of_out_of_range(addr, range, range + na + pna, na, ns))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* Start with the parent range base. */
|
|
|
|
memcpy(result, range + na, pna * 4);
|
|
|
|
|
|
|
|
/* Add in the child address offset. */
|
|
|
|
for (i = 0; i < na; i++)
|
|
|
|
result[pna - 1 - i] +=
|
|
|
|
(addr[na - 1 - i] -
|
|
|
|
range[na - 1 - i]);
|
|
|
|
|
|
|
|
memcpy(addr, result, pna * 4);
|
2006-06-29 21:34:50 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2007-03-29 07:47:23 +00:00
|
|
|
static unsigned int of_bus_default_get_flags(const u32 *addr)
|
2006-06-29 21:34:50 +00:00
|
|
|
{
|
|
|
|
return IORESOURCE_MEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* PCI bus specific translator
|
|
|
|
*/
|
|
|
|
|
|
|
|
static int of_bus_pci_match(struct device_node *np)
|
|
|
|
{
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) {
|
|
|
|
/* Do not do PCI specific frobbing if the
|
|
|
|
* PCI bridge lacks a ranges property. We
|
|
|
|
* want to pass it through up to the next
|
|
|
|
* parent as-is, not with the PCI translate
|
|
|
|
* method which chops off the top address cell.
|
|
|
|
*/
|
|
|
|
if (!of_find_property(np, "ranges", NULL))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
2006-06-29 21:34:50 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void of_bus_pci_count_cells(struct device_node *np,
|
|
|
|
int *addrc, int *sizec)
|
|
|
|
{
|
|
|
|
if (addrc)
|
|
|
|
*addrc = 3;
|
|
|
|
if (sizec)
|
|
|
|
*sizec = 2;
|
|
|
|
}
|
|
|
|
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
static int of_bus_pci_map(u32 *addr, const u32 *range,
|
|
|
|
int na, int ns, int pna)
|
2006-06-29 21:34:50 +00:00
|
|
|
{
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
u32 result[OF_MAX_ADDR_CELLS];
|
|
|
|
int i;
|
2006-06-29 21:34:50 +00:00
|
|
|
|
|
|
|
/* Check address type match */
|
|
|
|
if ((addr[0] ^ range[0]) & 0x03000000)
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
return -EINVAL;
|
2006-06-29 21:34:50 +00:00
|
|
|
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
if (of_out_of_range(addr + 1, range + 1, range + na + pna,
|
|
|
|
na - 1, ns))
|
|
|
|
return -EINVAL;
|
2006-06-29 21:34:50 +00:00
|
|
|
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
/* Start with the parent range base. */
|
|
|
|
memcpy(result, range + na, pna * 4);
|
2006-06-29 21:34:50 +00:00
|
|
|
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
/* Add in the child address offset, skipping high cell. */
|
|
|
|
for (i = 0; i < na - 1; i++)
|
|
|
|
result[pna - 1 - i] +=
|
|
|
|
(addr[na - 1 - i] -
|
|
|
|
range[na - 1 - i]);
|
|
|
|
|
|
|
|
memcpy(addr, result, pna * 4);
|
|
|
|
|
|
|
|
return 0;
|
2006-06-29 21:34:50 +00:00
|
|
|
}
|
|
|
|
|
2007-03-29 07:47:23 +00:00
|
|
|
static unsigned int of_bus_pci_get_flags(const u32 *addr)
|
2006-06-29 21:34:50 +00:00
|
|
|
{
|
|
|
|
unsigned int flags = 0;
|
|
|
|
u32 w = addr[0];
|
|
|
|
|
|
|
|
switch((w >> 24) & 0x03) {
|
|
|
|
case 0x01:
|
|
|
|
flags |= IORESOURCE_IO;
|
|
|
|
case 0x02: /* 32 bits */
|
|
|
|
case 0x03: /* 64 bits */
|
|
|
|
flags |= IORESOURCE_MEM;
|
|
|
|
}
|
|
|
|
if (w & 0x40000000)
|
|
|
|
flags |= IORESOURCE_PREFETCH;
|
|
|
|
return flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* SBUS bus specific translator
|
|
|
|
*/
|
|
|
|
|
|
|
|
static int of_bus_sbus_match(struct device_node *np)
|
|
|
|
{
|
|
|
|
return !strcmp(np->name, "sbus") ||
|
|
|
|
!strcmp(np->name, "sbi");
|
|
|
|
}
|
|
|
|
|
|
|
|
static void of_bus_sbus_count_cells(struct device_node *child,
|
|
|
|
int *addrc, int *sizec)
|
|
|
|
{
|
|
|
|
if (addrc)
|
|
|
|
*addrc = 2;
|
|
|
|
if (sizec)
|
|
|
|
*sizec = 1;
|
|
|
|
}
|
|
|
|
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
static int of_bus_sbus_map(u32 *addr, const u32 *range, int na, int ns, int pna)
|
2006-06-29 21:34:50 +00:00
|
|
|
{
|
|
|
|
return of_bus_default_map(addr, range, na, ns, pna);
|
|
|
|
}
|
|
|
|
|
2007-03-29 07:47:23 +00:00
|
|
|
static unsigned int of_bus_sbus_get_flags(const u32 *addr)
|
2006-06-29 21:34:50 +00:00
|
|
|
{
|
|
|
|
return IORESOURCE_MEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Array of bus specific translators
|
|
|
|
*/
|
|
|
|
|
|
|
|
static struct of_bus of_busses[] = {
|
|
|
|
/* PCI */
|
|
|
|
{
|
|
|
|
.name = "pci",
|
|
|
|
.addr_prop_name = "assigned-addresses",
|
|
|
|
.match = of_bus_pci_match,
|
|
|
|
.count_cells = of_bus_pci_count_cells,
|
|
|
|
.map = of_bus_pci_map,
|
|
|
|
.get_flags = of_bus_pci_get_flags,
|
|
|
|
},
|
|
|
|
/* SBUS */
|
|
|
|
{
|
|
|
|
.name = "sbus",
|
|
|
|
.addr_prop_name = "reg",
|
|
|
|
.match = of_bus_sbus_match,
|
|
|
|
.count_cells = of_bus_sbus_count_cells,
|
|
|
|
.map = of_bus_sbus_map,
|
|
|
|
.get_flags = of_bus_sbus_get_flags,
|
|
|
|
},
|
|
|
|
/* Default */
|
|
|
|
{
|
|
|
|
.name = "default",
|
|
|
|
.addr_prop_name = "reg",
|
|
|
|
.match = NULL,
|
|
|
|
.count_cells = of_bus_default_count_cells,
|
|
|
|
.map = of_bus_default_map,
|
|
|
|
.get_flags = of_bus_default_get_flags,
|
|
|
|
},
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct of_bus *of_match_bus(struct device_node *np)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(of_busses); i ++)
|
|
|
|
if (!of_busses[i].match || of_busses[i].match(np))
|
|
|
|
return &of_busses[i];
|
|
|
|
BUG();
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __init build_one_resource(struct device_node *parent,
|
|
|
|
struct of_bus *bus,
|
|
|
|
struct of_bus *pbus,
|
|
|
|
u32 *addr,
|
|
|
|
int na, int ns, int pna)
|
|
|
|
{
|
2007-03-29 07:47:23 +00:00
|
|
|
const u32 *ranges;
|
2006-06-29 21:34:50 +00:00
|
|
|
unsigned int rlen;
|
|
|
|
int rone;
|
|
|
|
|
|
|
|
ranges = of_get_property(parent, "ranges", &rlen);
|
|
|
|
if (ranges == NULL || rlen == 0) {
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
u32 result[OF_MAX_ADDR_CELLS];
|
|
|
|
int i;
|
|
|
|
|
|
|
|
memset(result, 0, pna * 4);
|
|
|
|
for (i = 0; i < na; i++)
|
|
|
|
result[pna - 1 - i] =
|
|
|
|
addr[na - 1 - i];
|
|
|
|
|
|
|
|
memcpy(addr, result, pna * 4);
|
|
|
|
return 0;
|
2006-06-29 21:34:50 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Now walk through the ranges */
|
|
|
|
rlen /= 4;
|
|
|
|
rone = na + pna + ns;
|
|
|
|
for (; rlen >= rone; rlen -= rone, ranges += rone) {
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
if (!bus->map(addr, ranges, na, ns, pna))
|
|
|
|
return 0;
|
2006-06-29 21:34:50 +00:00
|
|
|
}
|
|
|
|
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
return 1;
|
2006-06-29 21:34:50 +00:00
|
|
|
}
|
|
|
|
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
static int of_resource_verbose;
|
|
|
|
|
2006-06-29 21:34:50 +00:00
|
|
|
static void __init build_device_resources(struct of_device *op,
|
|
|
|
struct device *parent)
|
|
|
|
{
|
|
|
|
struct of_device *p_op;
|
|
|
|
struct of_bus *bus;
|
|
|
|
int na, ns;
|
|
|
|
int index, num_reg;
|
2007-03-29 07:47:23 +00:00
|
|
|
const void *preg;
|
2006-06-29 21:34:50 +00:00
|
|
|
|
|
|
|
if (!parent)
|
|
|
|
return;
|
|
|
|
|
|
|
|
p_op = to_of_device(parent);
|
|
|
|
bus = of_match_bus(p_op->node);
|
|
|
|
bus->count_cells(op->node, &na, &ns);
|
|
|
|
|
|
|
|
preg = of_get_property(op->node, bus->addr_prop_name, &num_reg);
|
|
|
|
if (!preg || num_reg == 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Convert to num-cells. */
|
|
|
|
num_reg /= 4;
|
|
|
|
|
|
|
|
/* Conver to num-entries. */
|
|
|
|
num_reg /= na + ns;
|
|
|
|
|
|
|
|
for (index = 0; index < num_reg; index++) {
|
|
|
|
struct resource *r = &op->resource[index];
|
|
|
|
u32 addr[OF_MAX_ADDR_CELLS];
|
2007-03-29 07:47:23 +00:00
|
|
|
const u32 *reg = (preg + (index * ((na + ns) * 4)));
|
2006-06-29 21:34:50 +00:00
|
|
|
struct device_node *dp = op->node;
|
|
|
|
struct device_node *pp = p_op->node;
|
2007-03-01 07:20:12 +00:00
|
|
|
struct of_bus *pbus, *dbus;
|
2006-06-29 21:34:50 +00:00
|
|
|
u64 size, result = OF_BAD_ADDR;
|
|
|
|
unsigned long flags;
|
|
|
|
int dna, dns;
|
|
|
|
int pna, pns;
|
|
|
|
|
|
|
|
size = of_read_addr(reg + na, ns);
|
|
|
|
flags = bus->get_flags(reg);
|
|
|
|
|
|
|
|
memcpy(addr, reg, na * 4);
|
|
|
|
|
|
|
|
/* If the immediate parent has no ranges property to apply,
|
|
|
|
* just use a 1<->1 mapping.
|
|
|
|
*/
|
|
|
|
if (of_find_property(pp, "ranges", NULL) == NULL) {
|
|
|
|
result = of_read_addr(addr, na);
|
|
|
|
goto build_res;
|
|
|
|
}
|
|
|
|
|
|
|
|
dna = na;
|
|
|
|
dns = ns;
|
2007-03-01 07:20:12 +00:00
|
|
|
dbus = bus;
|
2006-06-29 21:34:50 +00:00
|
|
|
|
|
|
|
while (1) {
|
|
|
|
dp = pp;
|
|
|
|
pp = dp->parent;
|
|
|
|
if (!pp) {
|
|
|
|
result = of_read_addr(addr, dna);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
pbus = of_match_bus(pp);
|
|
|
|
pbus->count_cells(dp, &pna, &pns);
|
|
|
|
|
2007-03-01 07:20:12 +00:00
|
|
|
if (build_one_resource(dp, dbus, pbus, addr,
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
dna, dns, pna))
|
2006-06-29 21:34:50 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
dna = pna;
|
|
|
|
dns = pns;
|
2007-03-01 07:20:12 +00:00
|
|
|
dbus = pbus;
|
2006-06-29 21:34:50 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
build_res:
|
|
|
|
memset(r, 0, sizeof(*r));
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
|
|
|
|
if (of_resource_verbose)
|
|
|
|
printk("%s reg[%d] -> %llx\n",
|
|
|
|
op->node->full_name, index,
|
|
|
|
result);
|
|
|
|
|
2006-06-29 21:34:50 +00:00
|
|
|
if (result != OF_BAD_ADDR) {
|
2006-06-29 21:35:14 +00:00
|
|
|
r->start = result & 0xffffffff;
|
2006-06-29 21:34:50 +00:00
|
|
|
r->end = result + size - 1;
|
2006-06-29 21:35:14 +00:00
|
|
|
r->flags = flags | ((result >> 32ULL) & 0xffUL);
|
2006-06-29 21:34:50 +00:00
|
|
|
}
|
|
|
|
r->name = op->node->name;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct of_device * __init scan_one_device(struct device_node *dp,
|
|
|
|
struct device *parent)
|
|
|
|
{
|
|
|
|
struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL);
|
2007-03-29 07:47:23 +00:00
|
|
|
const struct linux_prom_irqs *intr;
|
2006-06-29 22:08:02 +00:00
|
|
|
int len, i;
|
2006-06-29 21:34:50 +00:00
|
|
|
|
|
|
|
if (!op)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
op->node = dp;
|
|
|
|
|
|
|
|
op->clock_freq = of_getintprop_default(dp, "clock-frequency",
|
|
|
|
(25*1000*1000));
|
|
|
|
op->portid = of_getintprop_default(dp, "upa-portid", -1);
|
|
|
|
if (op->portid == -1)
|
|
|
|
op->portid = of_getintprop_default(dp, "portid", -1);
|
|
|
|
|
2006-06-29 22:08:02 +00:00
|
|
|
intr = of_get_property(dp, "intr", &len);
|
|
|
|
if (intr) {
|
|
|
|
op->num_irqs = len / sizeof(struct linux_prom_irqs);
|
|
|
|
for (i = 0; i < op->num_irqs; i++)
|
|
|
|
op->irqs[i] = intr[i].pri;
|
|
|
|
} else {
|
2007-03-29 07:47:23 +00:00
|
|
|
const unsigned int *irq =
|
|
|
|
of_get_property(dp, "interrupts", &len);
|
2006-06-29 22:08:02 +00:00
|
|
|
|
|
|
|
if (irq) {
|
|
|
|
op->num_irqs = len / sizeof(unsigned int);
|
|
|
|
for (i = 0; i < op->num_irqs; i++)
|
|
|
|
op->irqs[i] = irq[i];
|
|
|
|
} else {
|
|
|
|
op->num_irqs = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (sparc_cpu_model == sun4d) {
|
|
|
|
static int pil_to_sbus[] = {
|
|
|
|
0, 0, 1, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 0,
|
|
|
|
};
|
2006-07-18 04:39:09 +00:00
|
|
|
struct device_node *io_unit, *sbi = dp->parent;
|
2007-03-29 07:47:23 +00:00
|
|
|
const struct linux_prom_registers *regs;
|
2006-07-18 04:39:09 +00:00
|
|
|
int board, slot;
|
|
|
|
|
|
|
|
while (sbi) {
|
|
|
|
if (!strcmp(sbi->name, "sbi"))
|
|
|
|
break;
|
|
|
|
|
|
|
|
sbi = sbi->parent;
|
|
|
|
}
|
|
|
|
if (!sbi)
|
|
|
|
goto build_resources;
|
2006-06-29 22:08:02 +00:00
|
|
|
|
|
|
|
regs = of_get_property(dp, "reg", NULL);
|
2006-07-18 04:39:09 +00:00
|
|
|
if (!regs)
|
|
|
|
goto build_resources;
|
|
|
|
|
2006-06-29 22:08:02 +00:00
|
|
|
slot = regs->which_io;
|
|
|
|
|
2006-07-18 04:39:09 +00:00
|
|
|
/* If SBI's parent is not io-unit or the io-unit lacks
|
|
|
|
* a "board#" property, something is very wrong.
|
|
|
|
*/
|
|
|
|
if (!sbi->parent || strcmp(sbi->parent->name, "io-unit")) {
|
|
|
|
printk("%s: Error, parent is not io-unit.\n",
|
|
|
|
sbi->full_name);
|
|
|
|
goto build_resources;
|
|
|
|
}
|
|
|
|
io_unit = sbi->parent;
|
|
|
|
board = of_getintprop_default(io_unit, "board#", -1);
|
|
|
|
if (board == -1) {
|
|
|
|
printk("%s: Error, lacks board# property.\n",
|
|
|
|
io_unit->full_name);
|
|
|
|
goto build_resources;
|
|
|
|
}
|
|
|
|
|
2006-06-29 22:08:02 +00:00
|
|
|
for (i = 0; i < op->num_irqs; i++) {
|
|
|
|
int this_irq = op->irqs[i];
|
|
|
|
int sbusl = pil_to_sbus[this_irq];
|
|
|
|
|
|
|
|
if (sbusl)
|
|
|
|
this_irq = (((board + 1) << 5) +
|
|
|
|
(sbusl << 2) +
|
|
|
|
slot);
|
|
|
|
|
|
|
|
op->irqs[i] = this_irq;
|
|
|
|
}
|
|
|
|
}
|
2006-06-29 21:34:50 +00:00
|
|
|
|
2006-07-18 04:39:09 +00:00
|
|
|
build_resources:
|
2006-06-29 21:34:50 +00:00
|
|
|
build_device_resources(op, parent);
|
|
|
|
|
|
|
|
op->dev.parent = parent;
|
|
|
|
op->dev.bus = &of_bus_type;
|
|
|
|
if (!parent)
|
|
|
|
strcpy(op->dev.bus_id, "root");
|
|
|
|
else
|
2006-10-27 08:03:31 +00:00
|
|
|
sprintf(op->dev.bus_id, "%08x", dp->node);
|
2006-06-29 21:34:50 +00:00
|
|
|
|
|
|
|
if (of_device_register(op)) {
|
|
|
|
printk("%s: Could not register of device.\n",
|
|
|
|
dp->full_name);
|
|
|
|
kfree(op);
|
|
|
|
op = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return op;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __init scan_tree(struct device_node *dp, struct device *parent)
|
|
|
|
{
|
|
|
|
while (dp) {
|
|
|
|
struct of_device *op = scan_one_device(dp, parent);
|
|
|
|
|
|
|
|
if (op)
|
|
|
|
scan_tree(dp->child, &op->dev);
|
|
|
|
|
|
|
|
dp = dp->sibling;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __init scan_of_devices(void)
|
|
|
|
{
|
|
|
|
struct device_node *root = of_find_node_by_path("/");
|
|
|
|
struct of_device *parent;
|
|
|
|
|
|
|
|
parent = scan_one_device(root, NULL);
|
|
|
|
if (!parent)
|
|
|
|
return;
|
|
|
|
|
|
|
|
scan_tree(root->child, &parent->dev);
|
|
|
|
}
|
|
|
|
|
2006-06-23 22:55:17 +00:00
|
|
|
static int __init of_bus_driver_init(void)
|
|
|
|
{
|
2006-06-29 21:34:50 +00:00
|
|
|
int err;
|
2006-06-23 22:55:17 +00:00
|
|
|
|
2006-06-29 21:34:50 +00:00
|
|
|
err = bus_register(&of_bus_type);
|
2006-06-23 22:55:17 +00:00
|
|
|
#ifdef CONFIG_PCI
|
|
|
|
if (!err)
|
|
|
|
err = bus_register(&ebus_bus_type);
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_SBUS
|
|
|
|
if (!err)
|
|
|
|
err = bus_register(&sbus_bus_type);
|
|
|
|
#endif
|
2006-06-29 21:34:50 +00:00
|
|
|
|
|
|
|
if (!err)
|
|
|
|
scan_of_devices();
|
|
|
|
|
|
|
|
return err;
|
2006-06-23 22:55:17 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
postcore_initcall(of_bus_driver_init);
|
|
|
|
|
[SPARC]: Fix OF register translations under sub-PCI busses.
There is an implicit assumption in the code that ranges will translate
to something that can fit in 2 32-bit cells, or a 64-bit value. For
certain kinds of things below PCI this isn't necessarily true.
Here is what the relevant OF device hierarchy looks like for one of
the serial controllers on an Ultra5:
Node 0xf005f1e0
ranges: 00000000.00000000.00000000.000001fe.01000000.00000000.01000000
01000000.00000000.00000000.000001fe.02000000.00000000.01000000
02000000.00000000.00000000.000001ff.00000000.00000001.00000000
03000000.00000000.00000000.000001ff.00000000.00000001.00000000
device_type: 'pci'
model: 'SUNW,sabre'
Node 0xf005f9d4
device_type: 'pci'
model: 'SUNW,simba'
Node 0xf0060d24
ranges: 00000010.00000000 82010810.00000000.f0000000 01000000
00000014.00000000 82010814.00000000.f1000000 00800000
name: 'ebus'
Node 0xf0062dac
reg: 00000014.003083f8.00000008 --> 0x1ff.f13083f8
device_type: 'serial'
name: 'su'
So the correct translation here is:
1) Match "su" register to second ranges entry of 'ebus', which translates
into a PCI triplet "82010814.00000000.f1000000" of size 00800000, which
gives us "82010814.00000000.f13083f8".
2) Pass-through "SUNW,simba" since it lacks ranges property
3) Match "82010814.00000000.f13083f8" to third ranges property of PCI
controller node 'SUNW,sabre', and we arrive at the final physical
MMIO address of "0x1fff13083f8".
Due to the 2-cell assumption, we couldn't translate to a PCI 3-cell
value, and we couldn't perform a pass-thru on it either.
It was easiest to just stop splitting the ranges application operation
between two methods, ->map and ->translate, and just let ->map do all
the work. That way it would work purely on 32-bit cell arrays instead
of having to "return" some value like a u64.
It's still not %100 correct because the out-of-range check is still
done using the 64 least significant bits of the range and address.
But it does work for all the cases I've thrown at it so far.
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-07-13 06:19:31 +00:00
|
|
|
static int __init of_debug(char *str)
|
|
|
|
{
|
|
|
|
int val = 0;
|
|
|
|
|
|
|
|
get_option(&str, &val);
|
|
|
|
if (val & 1)
|
|
|
|
of_resource_verbose = 1;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
__setup("of_debug=", of_debug);
|
|
|
|
|
2006-06-23 22:55:17 +00:00
|
|
|
int of_register_driver(struct of_platform_driver *drv, struct bus_type *bus)
|
|
|
|
{
|
|
|
|
/* initialize common driver fields */
|
|
|
|
drv->driver.name = drv->name;
|
|
|
|
drv->driver.bus = bus;
|
|
|
|
|
|
|
|
/* register with core */
|
|
|
|
return driver_register(&drv->driver);
|
|
|
|
}
|
|
|
|
|
|
|
|
void of_unregister_driver(struct of_platform_driver *drv)
|
|
|
|
{
|
|
|
|
driver_unregister(&drv->driver);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static ssize_t dev_show_devspec(struct device *dev, struct device_attribute *attr, char *buf)
|
|
|
|
{
|
|
|
|
struct of_device *ofdev;
|
|
|
|
|
|
|
|
ofdev = to_of_device(dev);
|
|
|
|
return sprintf(buf, "%s", ofdev->node->full_name);
|
|
|
|
}
|
|
|
|
|
|
|
|
static DEVICE_ATTR(devspec, S_IRUGO, dev_show_devspec, NULL);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* of_release_dev - free an of device structure when all users of it are finished.
|
|
|
|
* @dev: device that's been disconnected
|
|
|
|
*
|
|
|
|
* Will be called only by the device core when all users of this of device are
|
|
|
|
* done.
|
|
|
|
*/
|
|
|
|
void of_release_dev(struct device *dev)
|
|
|
|
{
|
|
|
|
struct of_device *ofdev;
|
|
|
|
|
|
|
|
ofdev = to_of_device(dev);
|
|
|
|
|
|
|
|
kfree(ofdev);
|
|
|
|
}
|
|
|
|
|
|
|
|
int of_device_register(struct of_device *ofdev)
|
|
|
|
{
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
BUG_ON(ofdev->node == NULL);
|
|
|
|
|
|
|
|
rc = device_register(&ofdev->dev);
|
|
|
|
if (rc)
|
|
|
|
return rc;
|
|
|
|
|
2006-07-10 22:28:54 +00:00
|
|
|
rc = device_create_file(&ofdev->dev, &dev_attr_devspec);
|
|
|
|
if (rc)
|
|
|
|
device_unregister(&ofdev->dev);
|
2006-06-23 22:55:17 +00:00
|
|
|
|
2006-07-10 22:28:54 +00:00
|
|
|
return rc;
|
2006-06-23 22:55:17 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void of_device_unregister(struct of_device *ofdev)
|
|
|
|
{
|
|
|
|
device_remove_file(&ofdev->dev, &dev_attr_devspec);
|
|
|
|
device_unregister(&ofdev->dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct of_device* of_platform_device_create(struct device_node *np,
|
|
|
|
const char *bus_id,
|
|
|
|
struct device *parent,
|
|
|
|
struct bus_type *bus)
|
|
|
|
{
|
|
|
|
struct of_device *dev;
|
|
|
|
|
2006-12-01 01:07:04 +00:00
|
|
|
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
|
2006-06-23 22:55:17 +00:00
|
|
|
if (!dev)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
dev->dev.parent = parent;
|
|
|
|
dev->dev.bus = bus;
|
|
|
|
dev->dev.release = of_release_dev;
|
|
|
|
|
|
|
|
strlcpy(dev->dev.bus_id, bus_id, BUS_ID_SIZE);
|
|
|
|
|
|
|
|
if (of_device_register(dev) != 0) {
|
|
|
|
kfree(dev);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return dev;
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(of_match_device);
|
|
|
|
EXPORT_SYMBOL(of_register_driver);
|
|
|
|
EXPORT_SYMBOL(of_unregister_driver);
|
|
|
|
EXPORT_SYMBOL(of_device_register);
|
|
|
|
EXPORT_SYMBOL(of_device_unregister);
|
|
|
|
EXPORT_SYMBOL(of_dev_get);
|
|
|
|
EXPORT_SYMBOL(of_dev_put);
|
|
|
|
EXPORT_SYMBOL(of_platform_device_create);
|
|
|
|
EXPORT_SYMBOL(of_release_dev);
|