aha/arch/sparc64/kernel/pci_sun4v.c

999 lines
23 KiB
C
Raw Normal View History

/* pci_sun4v.c: SUN4V specific PCI controller support.
*
* Copyright (C) 2006, 2007, 2008 David S. Miller (davem@davemloft.net)
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/irq.h>
#include <linux/msi.h>
#include <linux/log2.h>
#include <asm/iommu.h>
#include <asm/irq.h>
#include <asm/upa.h>
#include <asm/pstate.h>
#include <asm/oplib.h>
#include <asm/hypervisor.h>
#include <asm/prom.h>
#include "pci_impl.h"
#include "iommu_common.h"
#include "pci_sun4v.h"
static unsigned long vpci_major = 1;
static unsigned long vpci_minor = 1;
#define PGLIST_NENTS (PAGE_SIZE / sizeof(u64))
struct iommu_batch {
struct device *dev; /* Device mapping is for. */
unsigned long prot; /* IOMMU page protections */
unsigned long entry; /* Index into IOTSB. */
u64 *pglist; /* List of physical pages */
unsigned long npages; /* Number of pages in list. */
};
static DEFINE_PER_CPU(struct iommu_batch, iommu_batch);
/* Interrupts must be disabled. */
static inline void iommu_batch_start(struct device *dev, unsigned long prot, unsigned long entry)
{
struct iommu_batch *p = &__get_cpu_var(iommu_batch);
p->dev = dev;
p->prot = prot;
p->entry = entry;
p->npages = 0;
}
/* Interrupts must be disabled. */
static long iommu_batch_flush(struct iommu_batch *p)
{
struct pci_pbm_info *pbm = p->dev->archdata.host_controller;
unsigned long devhandle = pbm->devhandle;
unsigned long prot = p->prot;
unsigned long entry = p->entry;
u64 *pglist = p->pglist;
unsigned long npages = p->npages;
while (npages != 0) {
long num;
num = pci_sun4v_iommu_map(devhandle, HV_PCI_TSBID(0, entry),
npages, prot, __pa(pglist));
if (unlikely(num < 0)) {
if (printk_ratelimit())
printk("iommu_batch_flush: IOMMU map of "
"[%08lx:%08lx:%lx:%lx:%lx] failed with "
"status %ld\n",
devhandle, HV_PCI_TSBID(0, entry),
npages, prot, __pa(pglist), num);
return -1;
}
entry += num;
npages -= num;
pglist += num;
}
p->entry = entry;
p->npages = 0;
return 0;
}
static inline void iommu_batch_new_entry(unsigned long entry)
{
struct iommu_batch *p = &__get_cpu_var(iommu_batch);
if (p->entry + p->npages == entry)
return;
if (p->entry != ~0UL)
iommu_batch_flush(p);
p->entry = entry;
}
/* Interrupts must be disabled. */
static inline long iommu_batch_add(u64 phys_page)
{
struct iommu_batch *p = &__get_cpu_var(iommu_batch);
BUG_ON(p->npages >= PGLIST_NENTS);
p->pglist[p->npages++] = phys_page;
if (p->npages == PGLIST_NENTS)
return iommu_batch_flush(p);
return 0;
}
/* Interrupts must be disabled. */
static inline long iommu_batch_end(void)
{
struct iommu_batch *p = &__get_cpu_var(iommu_batch);
BUG_ON(p->npages >= PGLIST_NENTS);
return iommu_batch_flush(p);
}
static void *dma_4v_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_addrp, gfp_t gfp)
{
struct iommu *iommu;
unsigned long flags, order, first_page, npages, n;
void *ret;
long entry;
size = IO_PAGE_ALIGN(size);
order = get_order(size);
if (unlikely(order >= MAX_ORDER))
return NULL;
npages = size >> IO_PAGE_SHIFT;
first_page = __get_free_pages(gfp, order);
if (unlikely(first_page == 0UL))
return NULL;
memset((char *)first_page, 0, PAGE_SIZE << order);
iommu = dev->archdata.iommu;
spin_lock_irqsave(&iommu->lock, flags);
entry = iommu_range_alloc(dev, iommu, npages, NULL);
spin_unlock_irqrestore(&iommu->lock, flags);
if (unlikely(entry == DMA_ERROR_CODE))
goto range_alloc_fail;
*dma_addrp = (iommu->page_table_map_base +
(entry << IO_PAGE_SHIFT));
ret = (void *) first_page;
first_page = __pa(first_page);
local_irq_save(flags);
iommu_batch_start(dev,
(HV_PCI_MAP_ATTR_READ |
HV_PCI_MAP_ATTR_WRITE),
entry);
for (n = 0; n < npages; n++) {
long err = iommu_batch_add(first_page + (n * PAGE_SIZE));
if (unlikely(err < 0L))
goto iommu_map_fail;
}
if (unlikely(iommu_batch_end() < 0L))
goto iommu_map_fail;
local_irq_restore(flags);
return ret;
iommu_map_fail:
/* Interrupts are disabled. */
spin_lock(&iommu->lock);
iommu_range_free(iommu, *dma_addrp, npages);
spin_unlock_irqrestore(&iommu->lock, flags);
range_alloc_fail:
free_pages(first_page, order);
return NULL;
}
static void dma_4v_free_coherent(struct device *dev, size_t size, void *cpu,
dma_addr_t dvma)
{
struct pci_pbm_info *pbm;
struct iommu *iommu;
unsigned long flags, order, npages, entry;
u32 devhandle;
npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
iommu = dev->archdata.iommu;
pbm = dev->archdata.host_controller;
devhandle = pbm->devhandle;
entry = ((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
spin_lock_irqsave(&iommu->lock, flags);
iommu_range_free(iommu, dvma, npages);
do {
unsigned long num;
num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
npages);
entry += num;
npages -= num;
} while (npages != 0);
spin_unlock_irqrestore(&iommu->lock, flags);
order = get_order(size);
if (order < 10)
free_pages((unsigned long)cpu, order);
}
static dma_addr_t dma_4v_map_single(struct device *dev, void *ptr, size_t sz,
enum dma_data_direction direction)
{
struct iommu *iommu;
unsigned long flags, npages, oaddr;
unsigned long i, base_paddr;
u32 bus_addr, ret;
unsigned long prot;
long entry;
iommu = dev->archdata.iommu;
if (unlikely(direction == DMA_NONE))
goto bad;
oaddr = (unsigned long)ptr;
npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
npages >>= IO_PAGE_SHIFT;
spin_lock_irqsave(&iommu->lock, flags);
entry = iommu_range_alloc(dev, iommu, npages, NULL);
spin_unlock_irqrestore(&iommu->lock, flags);
if (unlikely(entry == DMA_ERROR_CODE))
goto bad;
bus_addr = (iommu->page_table_map_base +
(entry << IO_PAGE_SHIFT));
ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
base_paddr = __pa(oaddr & IO_PAGE_MASK);
prot = HV_PCI_MAP_ATTR_READ;
if (direction != DMA_TO_DEVICE)
prot |= HV_PCI_MAP_ATTR_WRITE;
local_irq_save(flags);
iommu_batch_start(dev, prot, entry);
for (i = 0; i < npages; i++, base_paddr += IO_PAGE_SIZE) {
long err = iommu_batch_add(base_paddr);
if (unlikely(err < 0L))
goto iommu_map_fail;
}
if (unlikely(iommu_batch_end() < 0L))
goto iommu_map_fail;
local_irq_restore(flags);
return ret;
bad:
if (printk_ratelimit())
WARN_ON(1);
return DMA_ERROR_CODE;
iommu_map_fail:
/* Interrupts are disabled. */
spin_lock(&iommu->lock);
iommu_range_free(iommu, bus_addr, npages);
spin_unlock_irqrestore(&iommu->lock, flags);
return DMA_ERROR_CODE;
}
static void dma_4v_unmap_single(struct device *dev, dma_addr_t bus_addr,
size_t sz, enum dma_data_direction direction)
{
struct pci_pbm_info *pbm;
struct iommu *iommu;
unsigned long flags, npages;
long entry;
u32 devhandle;
if (unlikely(direction == DMA_NONE)) {
if (printk_ratelimit())
WARN_ON(1);
return;
}
iommu = dev->archdata.iommu;
pbm = dev->archdata.host_controller;
devhandle = pbm->devhandle;
npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
npages >>= IO_PAGE_SHIFT;
bus_addr &= IO_PAGE_MASK;
spin_lock_irqsave(&iommu->lock, flags);
iommu_range_free(iommu, bus_addr, npages);
entry = (bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT;
do {
unsigned long num;
num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
npages);
entry += num;
npages -= num;
} while (npages != 0);
spin_unlock_irqrestore(&iommu->lock, flags);
}
static int dma_4v_map_sg(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction)
{
struct scatterlist *s, *outs, *segstart;
unsigned long flags, handle, prot;
dma_addr_t dma_next = 0, dma_addr;
unsigned int max_seg_size;
unsigned long seg_boundary_size;
int outcount, incount, i;
struct iommu *iommu;
unsigned long base_shift;
long err;
BUG_ON(direction == DMA_NONE);
iommu = dev->archdata.iommu;
if (nelems == 0 || !iommu)
return 0;
prot = HV_PCI_MAP_ATTR_READ;
if (direction != DMA_TO_DEVICE)
prot |= HV_PCI_MAP_ATTR_WRITE;
outs = s = segstart = &sglist[0];
outcount = 1;
incount = nelems;
handle = 0;
/* Init first segment length for backout at failure */
outs->dma_length = 0;
spin_lock_irqsave(&iommu->lock, flags);
iommu_batch_start(dev, prot, ~0UL);
max_seg_size = dma_get_max_seg_size(dev);
seg_boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
IO_PAGE_SIZE) >> IO_PAGE_SHIFT;
base_shift = iommu->page_table_map_base >> IO_PAGE_SHIFT;
for_each_sg(sglist, s, nelems, i) {
unsigned long paddr, npages, entry, out_entry = 0, slen;
slen = s->length;
/* Sanity check */
if (slen == 0) {
dma_next = 0;
continue;
}
/* Allocate iommu entries for that segment */
paddr = (unsigned long) SG_ENT_PHYS_ADDRESS(s);
npages = iommu_num_pages(paddr, slen);
entry = iommu_range_alloc(dev, iommu, npages, &handle);
/* Handle failure */
if (unlikely(entry == DMA_ERROR_CODE)) {
if (printk_ratelimit())
printk(KERN_INFO "iommu_alloc failed, iommu %p paddr %lx"
" npages %lx\n", iommu, paddr, npages);
goto iommu_map_failed;
}
iommu_batch_new_entry(entry);
/* Convert entry to a dma_addr_t */
dma_addr = iommu->page_table_map_base +
(entry << IO_PAGE_SHIFT);
dma_addr |= (s->offset & ~IO_PAGE_MASK);
/* Insert into HW table */
paddr &= IO_PAGE_MASK;
while (npages--) {
err = iommu_batch_add(paddr);
if (unlikely(err < 0L))
goto iommu_map_failed;
paddr += IO_PAGE_SIZE;
}
/* If we are in an open segment, try merging */
if (segstart != s) {
/* We cannot merge if:
* - allocated dma_addr isn't contiguous to previous allocation
*/
if ((dma_addr != dma_next) ||
(outs->dma_length + s->length > max_seg_size) ||
(is_span_boundary(out_entry, base_shift,
seg_boundary_size, outs, s))) {
/* Can't merge: create a new segment */
segstart = s;
outcount++;
outs = sg_next(outs);
} else {
outs->dma_length += s->length;
}
}
if (segstart == s) {
/* This is a new segment, fill entries */
outs->dma_address = dma_addr;
outs->dma_length = slen;
out_entry = entry;
}
/* Calculate next page pointer for contiguous check */
dma_next = dma_addr + slen;
}
err = iommu_batch_end();
if (unlikely(err < 0L))
goto iommu_map_failed;
spin_unlock_irqrestore(&iommu->lock, flags);
if (outcount < incount) {
outs = sg_next(outs);
outs->dma_address = DMA_ERROR_CODE;
outs->dma_length = 0;
}
return outcount;
iommu_map_failed:
for_each_sg(sglist, s, nelems, i) {
if (s->dma_length != 0) {
unsigned long vaddr, npages;
vaddr = s->dma_address & IO_PAGE_MASK;
npages = iommu_num_pages(s->dma_address, s->dma_length);
iommu_range_free(iommu, vaddr, npages);
/* XXX demap? XXX */
s->dma_address = DMA_ERROR_CODE;
s->dma_length = 0;
}
if (s == outs)
break;
}
spin_unlock_irqrestore(&iommu->lock, flags);
return 0;
}
static void dma_4v_unmap_sg(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction)
{
struct pci_pbm_info *pbm;
struct scatterlist *sg;
struct iommu *iommu;
unsigned long flags;
u32 devhandle;
BUG_ON(direction == DMA_NONE);
iommu = dev->archdata.iommu;
pbm = dev->archdata.host_controller;
devhandle = pbm->devhandle;
spin_lock_irqsave(&iommu->lock, flags);
sg = sglist;
while (nelems--) {
dma_addr_t dma_handle = sg->dma_address;
unsigned int len = sg->dma_length;
unsigned long npages, entry;
if (!len)
break;
npages = iommu_num_pages(dma_handle, len);
iommu_range_free(iommu, dma_handle, npages);
entry = ((dma_handle - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
while (npages) {
unsigned long num;
num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
npages);
entry += num;
npages -= num;
}
sg = sg_next(sg);
}
spin_unlock_irqrestore(&iommu->lock, flags);
}
static void dma_4v_sync_single_for_cpu(struct device *dev,
dma_addr_t bus_addr, size_t sz,
enum dma_data_direction direction)
{
/* Nothing to do... */
}
static void dma_4v_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sglist, int nelems,
enum dma_data_direction direction)
{
/* Nothing to do... */
}
const struct dma_ops sun4v_dma_ops = {
.alloc_coherent = dma_4v_alloc_coherent,
.free_coherent = dma_4v_free_coherent,
.map_single = dma_4v_map_single,
.unmap_single = dma_4v_unmap_single,
.map_sg = dma_4v_map_sg,
.unmap_sg = dma_4v_unmap_sg,
.sync_single_for_cpu = dma_4v_sync_single_for_cpu,
.sync_sg_for_cpu = dma_4v_sync_sg_for_cpu,
};
2008-01-22 01:22:46 +00:00
static void __init pci_sun4v_scan_bus(struct pci_pbm_info *pbm)
{
struct property *prop;
struct device_node *dp;
dp = pbm->prom_node;
prop = of_find_property(dp, "66mhz-capable", NULL);
pbm->is_66mhz_capable = (prop != NULL);
pbm->pci_bus = pci_scan_one_pbm(pbm);
/* XXX register error interrupt handlers XXX */
}
static unsigned long __init probe_existing_entries(struct pci_pbm_info *pbm,
struct iommu *iommu)
{
struct iommu_arena *arena = &iommu->arena;
unsigned long i, cnt = 0;
u32 devhandle;
devhandle = pbm->devhandle;
for (i = 0; i < arena->limit; i++) {
unsigned long ret, io_attrs, ra;
ret = pci_sun4v_iommu_getmap(devhandle,
HV_PCI_TSBID(0, i),
&io_attrs, &ra);
if (ret == HV_EOK) {
if (page_in_phys_avail(ra)) {
pci_sun4v_iommu_demap(devhandle,
HV_PCI_TSBID(0, i), 1);
} else {
cnt++;
__set_bit(i, arena->map);
}
}
}
return cnt;
}
static void __init pci_sun4v_iommu_init(struct pci_pbm_info *pbm)
{
struct iommu *iommu = pbm->iommu;
struct property *prop;
unsigned long num_tsb_entries, sz, tsbsize;
u32 vdma[2], dma_mask, dma_offset;
prop = of_find_property(pbm->prom_node, "virtual-dma", NULL);
if (prop) {
u32 *val = prop->value;
vdma[0] = val[0];
vdma[1] = val[1];
} else {
/* No property, use default values. */
vdma[0] = 0x80000000;
vdma[1] = 0x80000000;
}
if ((vdma[0] | vdma[1]) & ~IO_PAGE_MASK) {
prom_printf("PCI-SUN4V: strange virtual-dma[%08x:%08x].\n",
vdma[0], vdma[1]);
prom_halt();
};
dma_mask = (roundup_pow_of_two(vdma[1]) - 1UL);
num_tsb_entries = vdma[1] / IO_PAGE_SIZE;
tsbsize = num_tsb_entries * sizeof(iopte_t);
dma_offset = vdma[0];
/* Setup initial software IOMMU state. */
spin_lock_init(&iommu->lock);
iommu->ctx_lowest_free = 1;
iommu->page_table_map_base = dma_offset;
iommu->dma_addr_mask = dma_mask;
/* Allocate and initialize the free area map. */
sz = (num_tsb_entries + 7) / 8;
sz = (sz + 7UL) & ~7UL;
iommu->arena.map = kzalloc(sz, GFP_KERNEL);
if (!iommu->arena.map) {
prom_printf("PCI_IOMMU: Error, kmalloc(arena.map) failed.\n");
prom_halt();
}
iommu->arena.limit = num_tsb_entries;
sz = probe_existing_entries(pbm, iommu);
if (sz)
printk("%s: Imported %lu TSB entries from OBP\n",
pbm->name, sz);
}
#ifdef CONFIG_PCI_MSI
struct pci_sun4v_msiq_entry {
u64 version_type;
#define MSIQ_VERSION_MASK 0xffffffff00000000UL
#define MSIQ_VERSION_SHIFT 32
#define MSIQ_TYPE_MASK 0x00000000000000ffUL
#define MSIQ_TYPE_SHIFT 0
#define MSIQ_TYPE_NONE 0x00
#define MSIQ_TYPE_MSG 0x01
#define MSIQ_TYPE_MSI32 0x02
#define MSIQ_TYPE_MSI64 0x03
#define MSIQ_TYPE_INTX 0x08
#define MSIQ_TYPE_NONE2 0xff
u64 intx_sysino;
u64 reserved1;
u64 stick;
u64 req_id; /* bus/device/func */
#define MSIQ_REQID_BUS_MASK 0xff00UL
#define MSIQ_REQID_BUS_SHIFT 8
#define MSIQ_REQID_DEVICE_MASK 0x00f8UL
#define MSIQ_REQID_DEVICE_SHIFT 3
#define MSIQ_REQID_FUNC_MASK 0x0007UL
#define MSIQ_REQID_FUNC_SHIFT 0
u64 msi_address;
/* The format of this value is message type dependent.
* For MSI bits 15:0 are the data from the MSI packet.
* For MSI-X bits 31:0 are the data from the MSI packet.
* For MSG, the message code and message routing code where:
* bits 39:32 is the bus/device/fn of the msg target-id
* bits 18:16 is the message routing code
* bits 7:0 is the message code
* For INTx the low order 2-bits are:
* 00 - INTA
* 01 - INTB
* 10 - INTC
* 11 - INTD
*/
u64 msi_data;
u64 reserved2;
};
static int pci_sun4v_get_head(struct pci_pbm_info *pbm, unsigned long msiqid,
unsigned long *head)
{
unsigned long err, limit;
err = pci_sun4v_msiq_gethead(pbm->devhandle, msiqid, head);
if (unlikely(err))
return -ENXIO;
limit = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
if (unlikely(*head >= limit))
return -EFBIG;
return 0;
}
static int pci_sun4v_dequeue_msi(struct pci_pbm_info *pbm,
unsigned long msiqid, unsigned long *head,
unsigned long *msi)
{
struct pci_sun4v_msiq_entry *ep;
unsigned long err, type;
/* Note: void pointer arithmetic, 'head' is a byte offset */
ep = (pbm->msi_queues + ((msiqid - pbm->msiq_first) *
(pbm->msiq_ent_count *
sizeof(struct pci_sun4v_msiq_entry))) +
*head);
if ((ep->version_type & MSIQ_TYPE_MASK) == 0)
return 0;
type = (ep->version_type & MSIQ_TYPE_MASK) >> MSIQ_TYPE_SHIFT;
if (unlikely(type != MSIQ_TYPE_MSI32 &&
type != MSIQ_TYPE_MSI64))
return -EINVAL;
*msi = ep->msi_data;
err = pci_sun4v_msi_setstate(pbm->devhandle,
ep->msi_data /* msi_num */,
HV_MSISTATE_IDLE);
if (unlikely(err))
return -ENXIO;
/* Clear the entry. */
ep->version_type &= ~MSIQ_TYPE_MASK;
(*head) += sizeof(struct pci_sun4v_msiq_entry);
if (*head >=
(pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry)))
*head = 0;
return 1;
}
static int pci_sun4v_set_head(struct pci_pbm_info *pbm, unsigned long msiqid,
unsigned long head)
{
unsigned long err;
err = pci_sun4v_msiq_sethead(pbm->devhandle, msiqid, head);
if (unlikely(err))
return -EINVAL;
return 0;
}
static int pci_sun4v_msi_setup(struct pci_pbm_info *pbm, unsigned long msiqid,
unsigned long msi, int is_msi64)
{
if (pci_sun4v_msi_setmsiq(pbm->devhandle, msi, msiqid,
(is_msi64 ?
HV_MSITYPE_MSI64 : HV_MSITYPE_MSI32)))
return -ENXIO;
if (pci_sun4v_msi_setstate(pbm->devhandle, msi, HV_MSISTATE_IDLE))
return -ENXIO;
if (pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_VALID))
return -ENXIO;
return 0;
}
static int pci_sun4v_msi_teardown(struct pci_pbm_info *pbm, unsigned long msi)
{
unsigned long err, msiqid;
err = pci_sun4v_msi_getmsiq(pbm->devhandle, msi, &msiqid);
if (err)
return -ENXIO;
pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_INVALID);
return 0;
}
static int pci_sun4v_msiq_alloc(struct pci_pbm_info *pbm)
{
unsigned long q_size, alloc_size, pages, order;
int i;
q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
alloc_size = (pbm->msiq_num * q_size);
order = get_order(alloc_size);
pages = __get_free_pages(GFP_KERNEL | __GFP_COMP, order);
if (pages == 0UL) {
printk(KERN_ERR "MSI: Cannot allocate MSI queues (o=%lu).\n",
order);
return -ENOMEM;
}
memset((char *)pages, 0, PAGE_SIZE << order);
pbm->msi_queues = (void *) pages;
for (i = 0; i < pbm->msiq_num; i++) {
unsigned long err, base = __pa(pages + (i * q_size));
unsigned long ret1, ret2;
err = pci_sun4v_msiq_conf(pbm->devhandle,
pbm->msiq_first + i,
base, pbm->msiq_ent_count);
if (err) {
printk(KERN_ERR "MSI: msiq register fails (err=%lu)\n",
err);
goto h_error;
}
err = pci_sun4v_msiq_info(pbm->devhandle,
pbm->msiq_first + i,
&ret1, &ret2);
if (err) {
printk(KERN_ERR "MSI: Cannot read msiq (err=%lu)\n",
err);
goto h_error;
}
if (ret1 != base || ret2 != pbm->msiq_ent_count) {
printk(KERN_ERR "MSI: Bogus qconf "
"expected[%lx:%x] got[%lx:%lx]\n",
base, pbm->msiq_ent_count,
ret1, ret2);
goto h_error;
}
}
return 0;
h_error:
free_pages(pages, order);
return -EINVAL;
}
static void pci_sun4v_msiq_free(struct pci_pbm_info *pbm)
{
unsigned long q_size, alloc_size, pages, order;
int i;
for (i = 0; i < pbm->msiq_num; i++) {
unsigned long msiqid = pbm->msiq_first + i;
(void) pci_sun4v_msiq_conf(pbm->devhandle, msiqid, 0UL, 0);
}
q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
alloc_size = (pbm->msiq_num * q_size);
order = get_order(alloc_size);
pages = (unsigned long) pbm->msi_queues;
free_pages(pages, order);
pbm->msi_queues = NULL;
}
static int pci_sun4v_msiq_build_irq(struct pci_pbm_info *pbm,
unsigned long msiqid,
unsigned long devino)
{
unsigned int virt_irq = sun4v_build_irq(pbm->devhandle, devino);
if (!virt_irq)
return -ENOMEM;
if (pci_sun4v_msiq_setstate(pbm->devhandle, msiqid, HV_MSIQSTATE_IDLE))
return -EINVAL;
if (pci_sun4v_msiq_setvalid(pbm->devhandle, msiqid, HV_MSIQ_VALID))
return -EINVAL;
return virt_irq;
}
static const struct sparc64_msiq_ops pci_sun4v_msiq_ops = {
.get_head = pci_sun4v_get_head,
.dequeue_msi = pci_sun4v_dequeue_msi,
.set_head = pci_sun4v_set_head,
.msi_setup = pci_sun4v_msi_setup,
.msi_teardown = pci_sun4v_msi_teardown,
.msiq_alloc = pci_sun4v_msiq_alloc,
.msiq_free = pci_sun4v_msiq_free,
.msiq_build_irq = pci_sun4v_msiq_build_irq,
};
static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
{
sparc64_pbm_msi_init(pbm, &pci_sun4v_msiq_ops);
}
#else /* CONFIG_PCI_MSI */
static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
{
}
#endif /* !(CONFIG_PCI_MSI) */
2008-01-22 01:22:46 +00:00
static void __init pci_sun4v_pbm_init(struct pci_controller_info *p,
struct device_node *dp, u32 devhandle)
{
struct pci_pbm_info *pbm;
if (devhandle & 0x40)
pbm = &p->pbm_B;
else
pbm = &p->pbm_A;
pbm->next = pci_pbm_root;
pci_pbm_root = pbm;
pbm->scan_bus = pci_sun4v_scan_bus;
pbm->pci_ops = &sun4v_pci_ops;
pbm->config_space_reg_bits = 12;
pbm->index = pci_num_pbms++;
pbm->parent = p;
pbm->prom_node = dp;
pbm->devhandle = devhandle;
pbm->name = dp->full_name;
printk("%s: SUN4V PCI Bus Module\n", pbm->name);
pci_determine_mem_io_space(pbm);
pci_get_pbm_props(pbm);
pci_sun4v_iommu_init(pbm);
pci_sun4v_msi_init(pbm);
}
void __init sun4v_pci_init(struct device_node *dp, char *model_name)
{
static int hvapi_negotiated = 0;
struct pci_controller_info *p;
struct pci_pbm_info *pbm;
struct iommu *iommu;
struct property *prop;
struct linux_prom64_registers *regs;
u32 devhandle;
int i;
if (!hvapi_negotiated++) {
int err = sun4v_hvapi_register(HV_GRP_PCI,
vpci_major,
&vpci_minor);
if (err) {
prom_printf("SUN4V_PCI: Could not register hvapi, "
"err=%d\n", err);
prom_halt();
}
printk("SUN4V_PCI: Registered hvapi major[%lu] minor[%lu]\n",
vpci_major, vpci_minor);
dma_ops = &sun4v_dma_ops;
}
prop = of_find_property(dp, "reg", NULL);
if (!prop) {
prom_printf("SUN4V_PCI: Could not find config registers\n");
prom_halt();
}
regs = prop->value;
devhandle = (regs->phys_addr >> 32UL) & 0x0fffffff;
for (pbm = pci_pbm_root; pbm; pbm = pbm->next) {
if (pbm->devhandle == (devhandle ^ 0x40)) {
pci_sun4v_pbm_init(pbm->parent, dp, devhandle);
return;
}
}
for_each_possible_cpu(i) {
unsigned long page = get_zeroed_page(GFP_ATOMIC);
if (!page)
goto fatal_memory_error;
per_cpu(iommu_batch, i).pglist = (u64 *) page;
}
p = kzalloc(sizeof(struct pci_controller_info), GFP_ATOMIC);
if (!p)
goto fatal_memory_error;
iommu = kzalloc(sizeof(struct iommu), GFP_ATOMIC);
if (!iommu)
goto fatal_memory_error;
p->pbm_A.iommu = iommu;
iommu = kzalloc(sizeof(struct iommu), GFP_ATOMIC);
if (!iommu)
goto fatal_memory_error;
p->pbm_B.iommu = iommu;
pci_sun4v_pbm_init(p, dp, devhandle);
return;
fatal_memory_error:
prom_printf("SUN4V_PCI: Fatal memory allocation error.\n");
prom_halt();
}