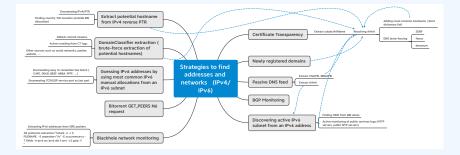
Improving Internet Wide Scanning with Dynamic Scanning

Team CIRCL
https://www.d4-project.org/


FIRSTCON21

Alexandre Dulaunoy

- Finding vulnerable devices can be challenging for CSIRTs (waiting for the next scan in Shodan, Censys).
- Finding the scope of the scan (regional versus global, wrong IRR allocation).
- Discovering newly devices exposed without scanning the whole IPv4 space.
- Discovering named-based services.
- Discovering newly exposed devices or services using IPv6 addresses.

- The goal of the talk is to summarize the techniques discovered, tested and used in the past years by CIRCL.
- Showing the advantages and disadvantages of each discovery techniques/tools.
- We won't be exhaustive but covering the applicable strategies for CSIRTs.

- Certificate Transparency provides a continuous stream of hostnames in logs and X.509 certificate.
- Extracting the X.509 certificate and associated subjectAltName.
- **Resolving A and AAAA** records for each hostname seen.
- Storing the records¹ last-seen and stream to the scanner the newly seen IP addresses.

¹https://github.com/D4-project/ct-scrutinize/blob/main/ bin/ct-dns-resolver.py

- In all the techniques shown, the brute forcing hostnames technique is reused in many steps (from the CT logs extraction, newly registered domains...).
- Brute forcing can be slow and have significant scalability issues.
- A good balance is to have **a minimal dictionary** of the most common hostnames (e.g. a top 20 global or regional).
- More advanced techniques such as Markov Chain Models² can be used to recover the hostnames.

https://hal.archives-ouvertes.fr/hal-00748792/document

²SDBF: Smart DNS Brute-Forcer,

- If you find a specific IPv6 address from other techniques (CT logs), finding IPv6 allocated subnet is easier.
- IPv6 manual allocation can be discovered by all the specific tricks such as
 - Compressed IPv6 address plus additional decimal (e.g. prefix::1);
 - Common hex block used (e.g. DEAD, BEEF, ABBA, CAFE, FFFF);
 - Service port in the address (e.g. ::53, ::443).

FINDING RANDOMIZED IPv6 ADDRESSES

** IPv6 General Address Analysis **			
Total IPv6 addre	sses: 1222		
Unicast:	1222 (100.00%)	Multicast:	0 (0.00%)
Unspec.:	0 (0.00%)		
** IPv6 Unicast Addresses **			
Loopback:	0 (0.00%)	IPv4-mapped:	0 (0.00%)
IPv4-compat.:	0 (0.00%)	Link-local:	0 (0.00%)
Site-local:	0 (0.00%)	Unique-local:	0 (0.00%)
6to4:	3 (0.25%)	Teredo:	3 (0.25%)
Global:	1216 (99.51%)		
+ IPv6 Unicast Interface Identifiers +			
Total IIDs analy	zed: 1222		
IEEE-based:	15 (1.23%)	Low-byte:	95 (7.77%)
Embed-IPv4:	18 (1.47%)	Embed-IPv4 (64):	39 (3.19%)
Embed-port:	0 (0.00%)	Embed-port (r):	0 (0.00%)
ISATAP:	0 (0.00%)	Teredo:	0 (0.00%)
Randomized:	1042 (85.27%)	Byte-pattern:	10 (0.82%)

- Providing public and accessible services can help to collect randomized IPv6 addresses.
- Such service can be public web services, network services (NTP, STUN, DNS services).
- Bittorrent trackers³ can be also a source of IPv6 addresses (GET_PEERS N6 request).

³Analysis of Bandwidth Attacks in a BitTorrentSwarm https://openaccess.city.ac.uk/id/eprint/16158/1/Adamsky, %20Florian.pdf

USING IPV4 REVERSE PTR

- 1 {"timestamp":"1622039107","name":"104.248.18.217","value":"observium.fairit.de","type":"
 ptr"}
- 3 {"timestamp":"1622003182","name":"104.248.19.147","value":"777-slots.de","type":"ptr"}
- 4 {"timestamp":"1622067602","name":"104.248.19.241","value":"rokmd.de","type":"ptr"}
- 5 {"timestamp":"1622004046","name":"104.248.19.43","value":"wordpresshaftpflichtversicherungdrohne.de","type":"ptr"}
- 6 {"timestamp":"1621988771","name":"104.248.19.95","value":"forum.sofacoach.de","type":"ptr
 "}
 - An easy way to find country allocation outside RIR whois allocation.
 - Extracting the domains and hosts can be used to feed the DNS bruteforcer.

EXTRACTING POTENTIAL HOSTNAMES FROM UNSTRUC-TURED TEXT

- Stream of git commit messages from GitHub or similar services is a gold mine for potential hostnames.
- Analysing the text to find for any potential domains or hostnames (e.g. DomainClassifier⁴ library).
- Valid domains can be then forwarded to the DNS brute-forcer.
- Such technique can be applied on any unstructured data source (e.g. social networks, forums).

⁴https://github.com/adulau/DomainClassifier

NEWLY REGISTERED DOMAINS AND PASSIVE DNS STREAM

- Feed of newly registered domains (some can be downloaded from ICANN⁵).
- Newly registered domains can be then forwarded to the DNS brute-forcer.
- Passive DNS streams provide another way to gather recently seen domains but also directly IPv4 (A records) and IPv6 (AAAA records) addresses.
- $\widehat{\mathfrak{M}} \rightarrow \mathsf{Feed}$ of newly registered domains can be costly.

⁵https://czds.icann.org

- Monitoring BGP messages in real time can be used to order the priority of scanning while doing Internet-wide or regional scans.
- Finding new CIDR blocks in IPv6 or IPv4 including stable or unstables networks (e.g. installing new services).
- BGP feeds can be collected from existing BGP sessions or even via the Routing Information Service Live⁶ from RIPE.

NETWORK TELESCOPE AND BLACK-HOLE MONITORING

- 1 tshark -n -r \\$FILENAME -E separator="/n" -E occurrence=a -T fields -e ipv6.src ipv6.dst
 | sort
 - Unsolicited network traffic can be analysed to feed the DNS brute force or the IPv4/IPv6 addresses can be extracted.
 - IPv6 extraction from encapsulation protocols such as GRE can be provide some IPv6 addresses.
 - Source IP addresses can be used as a priority mechanism for scanning (e.g. SSH scanner are more likely to be a vulnerable host).

 $\overleftrightarrow{} \rightarrow$ The volume of IPv6 addresses seen can be very low compared to CT log monitoring.

- Get in touch if you want to share some experiences and you can even do a pull-request on the GitHub repository
- Contact: info@circl.lu
- Slides and notes: https://github.com/adulau/ active-scanning-techniques
- @adulau @circl_lu @d4_project