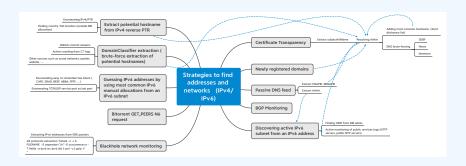
# Improving Internet Wide Scanning with Dynamic Scanning

Team CIRCL
https://www.d4-project.org/

FIRSTCON21




#### PROBLEM STATEMENT

- Finding vulnerable devices can be challenging for CSIRTs (waiting for the next scan in Shodan, Censys).
- Finding the scope of the scan (regional versus global, wrong IRR allocation).
- Discovering newly devices exposed without scanning the whole IPv4 space.
- Discovering name-based services (such as name based virtual host, SNI or related approaches).
- Discovering newly exposed devices or services using IPv6 addresses.

### **DOCUMENTING OUR JOURNEY**

- The goal of the talk is to summarize the techniques discovered, tested and used in the past years by CIRCL.
- Showing the advantages and disadvantages of each discovery techniques/tools.
- We won't be exhaustive but covering the applicable strategies for CSIRTs.

#### **OVERVIEW**



#### **CERTIFICATE TRANSPARENCY**

- Certificate Transparency provides a continuous stream of hostnames in logs and X.509 certificate.
- Extracting the X.509 certificate and associated subjectAltName.
- **Resolving A and AAAA** records for each hostname seen.
- Storing the records<sup>1</sup> last-seen and stream to the scanner the newly seen IP addresses.

 $\stackrel{\frown}{\bowtie} \rightarrow$  The enrollment of a certificate doesn't mean that a service is up-and-running.

https://github.com/D4-project/ct-scrutinize/blob/main/ bin/ct-dns-resolver.py

#### **BRUTE FORCING HOSTNAMES**

- In all the techniques shown, the brute forcing hostnames technique is reused in many steps (from the CT logs extraction, newly registered domains...).
- Brute forcing can be slow and have significant scalability issues.
- A good balance is to have **a minimal dictionary** of the most common hostnames (e.g. a top 20 global or regional).
- More advanced techniques such as Markov Chain Models<sup>2</sup> can be used to recover the hostnames.

<sup>2</sup>SDBF: Smart DNS Brute-Forcer, https://hal.archives-ouvertes.fr/hal-00748792/document

#### **IPv6 FINDING NEW HOSTS**

- If you find a specific IPv6 address from other techniques (CT logs), finding IPv6 allocated subnet is easier.
- **IPv6 manual allocation** can be discovered by all the specific tricks such as
  - Compressed IPv6 address plus additional decimal (e.g. prefix::1);
  - Common hex block used (e.g. DEAD, BEEF, ABBA, CAFE, FFFF);
  - Service port in the address (e.g. ::53, ::443).

#### FINDING RANDOMIZED IPV6 ADDRESSES

```
IPv6 General Address Analysis **
Total IPv6 addresses: 1222
                                 Multicast:
Unicast:
       1222 (100.00%)
                                                      0 (0.00\%)
                    0 (0.00\%)
Unspec.:
** IPv6 Unicast Addresses **
Loopback:
                    0 ( 0.00%)
                                  IPv4-mapped:
                                                      0 (0.00\%)
IPv4-compat.:
                    0 (
                        0.00%)
                                 Link-local:
                                                           0.00\%)
Site-local:
                                  Unique-local:
                    0 (
                        0.00%)
                                                           0.00\%
6to4:
                        0.25%)
                                 Teredo:
                                                           0.25\%)
Global:
                 1216 (99.51%)
 IPv6 Unicast Interface Identifiers +
Total IIDs analyzed: 1222
IEEE-based:
                                  Low-byte:
                 15 ( 1.23%)
                                                        95 (
                                                             7.77\%
Embed-IPv4:
                 18 ( 1.47%)
                                  Embed-IPv4 (64):
                                                        39 (
                                                             3.19\%
Embed-port:
                                  Embed-port (r):
                  0 (
                      0.00%)
                                                        0 (
                                                             0.00\%
TSATAP:
                       0.00%)
                                 Teredo:
                                                         0 (
                                                             0.00\%
Randomized:
                1042 ( 85.27%)
                                  Byte-pattern:
                                                        10 (
                                                             0.82\%)
```

#### PUBLIC SERVICE AND ACTIVE SCANNING

- Providing public and accessible services can help to collect randomized IPv6 addresses.
- Such service can be public web services, network services (NTP, STUN, DNS services).
- Bittorrent trackers<sup>3</sup> can be also a source of IPv6 addresses (GET\_PEERS N6 request).

<sup>&</sup>lt;sup>3</sup>Analysis of Bandwidth Attacks in a BitTorrentSwarm - https://openaccess.city.ac.uk/id/eprint/16158/1/Adamsky, %20Florian.pdf

### USING IPV4 REVERSE PTR

- An easy way to find country allocation outside RIR whois allocation.
- Extracting the domains and hosts can be used to feed the DNS bruteforcer.

# EXTRACTING POTENTIAL HOSTNAMES FROM UNSTRUCTURED TEXT

- **Stream of git commit messages** from GitHub or similar services is a gold mine for potential hostnames.
- Analysing the text to find for any potential domains or hostnames (e.g. DomainClassifier<sup>4</sup> library).
- Valid domains can be then forwarded to the DNS brute-forcer.
- Such technique can be applied on any unstructured data source (e.g. social networks, forums).

<sup>4</sup>https://github.com/adulau/DomainClassifier

# NEWLY REGISTERED DOMAINS AND PASSIVE DNS STREAM

- Feed of **newly registered domains** (some can be downloaded from ICANN<sup>5</sup>).
- Newly registered domains can be then forwarded to the DNS brute-forcer.
- Passive DNS streams provide another way to gather recently seen domains but also directly IPv4 (A records) and IPv6 (AAAA records) addresses.

 $\Longrightarrow$  Feed of newly registered domains can be costly.

<sup>5</sup>https://czds.icann.org

#### **BGP** MONITORING

- Monitoring BGP messages in real time can be used to order the priority of scanning while doing Internet-wide or regional scans.
- Finding new CIDR blocks in IPv6 or IPv4 including stable or unstables networks (e.g. installing new services).
- BGP feeds can be collected from existing BGP sessions or even via the Routing Information Service Live<sup>6</sup> from RIPE.

<sup>6</sup>https://ris-live.ripe.net/

#### NETWORK TELESCOPE AND BLACK-HOLE MONITORING

- 1 tshark -n -r \\$FILENAME -E separator="/n" -E occurrence=a -T fields -e ipv6.src ipv6.dst
  - **Unsolicited network traffic** can be analysed to feed the DNS brute force or the IPv4/IPv6 addresses can be extracted.
  - IPv6 extraction from encapsulation protocols such as GRE can be provide some IPv6 addresses.
  - Source IP addresses can be used as a priority mechanism for scanning (e.g. SSH scanner are more likely to be a vulnerable host).
  - The volume of IPv6 addresses seen can be very low compared to CT log monitoring.

#### **CONTACT**

- Get in touch if you want to share some experiences and you can even do a pull-request on the GitHub repository
- Contact: info@circl.lu
- Slides and notes: https://github.com/adulau/ active-scanning-techniques
- @adulau @circl\_lu @d4\_project